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ABSTRACT

Many application domains, spanning from low-level computer
vision to medical imaging, require high-fidelity images from
noisy measurements. State-of-the-art methods for solving de-
noising problems combine deep learning with iterative model-
based solvers, a concept known as deep algorithm unfolding
or unrolling. By combining a-priori knowledge of the forward
measurement model with learned proximal image-to-image
mappings based on deep networks, these methods yield so-
lutions that are both physically feasible (data-consistent) and
perceptually plausible (consistent with prior belief). However,
current proximal mappings based on (predominantly convolu-
tional) neural networks only implicitly learn such image priors.
In this paper, we propose to make these image priors fully
explicit by embedding deep generative models in the form
of normalizing flows within the unfolded proximal gradient
algorithm, and training the entire algorithm in an end-to-end
fashion. We demonstrate that the proposed method outper-
forms competitive baselines on image denoising.

Index Terms— image denoising, inverse problems, deep
unfolding, generative modeling, normalizing flows

1. INTRODUCTION

Image recovery from noisy measurements is an important
problem in applications spanning from medical imaging[1] to
photography[2]. Denoising can be posed as a linear inverse
problem with many potential solutions satisfying the measure-
ments. Recovery of a meaningful and plausible solution thus
requires adequate statistical priors. Formulating such priors
for natural or medical image recovery tasks is however not
trivial.

Traditionally, one might approach this problem from a
compressed sensing point of view [3, 4], where the signal
image is assumed to be sparse in some transform domain.
However, choosing the appropriate sparse domain is highly
dependent on the application and requires careful analysis of,
e.g., wavelet or total variation-based regularizers that are hard
to tune in practice.
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Deep learning[5] methods are increasingly being adopted
as alternatives to compressed sensing in image denoising [6, 7,
8, 9], but also in deconvolution [10], inpainting [11, 12] and
end-to-end signal recovery [13, 14]. Moreover, recent works
have shown that, using variable splitting techniques [15], any
preferred denoiser can be used within (plugged into) classical
model-based optimization methods (so called “plug-and-play’
approaches). Permitting the use of architectures based on
convolutional autoencoders, U-Nets [16], or residual networks
(ResNets) [17].

Deep generative models (DGMs), such as generative adver-
sarial networks (GANSs) [18], variational autoencoders (VAEs)
[19] and normalizing flows [20], can also be used as priors
for inverse problems [21, 22, 23, 24, 25]. Such DGMs are
pre-trained on large datasets of clean images, learning to map
simple (often Gaussian) latent distributions into the complex
distribution of images. After pre-training, DGMs are then
used to solve inverse problems by performing gradient-based
optimization in their simpler latent space.

’

While all of these approaches improve upon the hand-
crafted sparsity-based priors and exhibit great empirical suc-
cess, they do not accelerate the optimization process and still
rely on time-consuming iterative algorithms. Moreover, their
strength, being agnostic of the task and merely concerned with
modeling the general image prior, is also a limitation: these
approaches do not exploit task-specific statistical properties
that can aid the optimization.

Deep algorithm unfolding [26, 27, 28] aims to address
these problems by unrolling the iterative optimization algo-
rithm as a feed forward deep neural network. The result is
a deep network that takes the structure of the iterations in
proximal-gradient methods, but allows for learning the param-
eters and/or successive ‘“neural” proximal mappings directly
from training data.

Deep algorithm unfolding is a powerful technique; never-
theless, from an analytic point of view, these learned proximal
operators are lacking in a certain regard. In particular, although
these models perform excellent representation learning, there
is no analytic form to express or even approximate what is
actually learned. This fact motivated the current work: we set
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out to determine whether a more analytically rigorous formu-
lation of denoising, combined with deep unrolling, could yield
a more effective algorithm.

In this paper, we propose an end-to-end deep algorithm
unfolding framework that combines neural proximal gradient
descent with generative normalizing flow priors. Our approach
first pre-trains a generic flow-based model on natural images by
direct likelihood maximization, and subsequently fine-tunes
the entire pipeline and priors to adapt to specific image re-
construction tasks, in our case image denoising. Our main
contributions are as follows:

* We propose a new framework for solving image denois-
ing problems based on deep algorithm unfolding and
pre-trained normalizing flows priors that adapt to the
data.

* We leverage the generative probabilistic nature of our
model to yield a strong initial guess: the maximum
likelihood solution of the learned flow prior.

* We demonstrate a superior performance in comparison
with the state-of-the-art neural proximal gradient de-
scent baselines.

The remainder of this paper is organized as follows. In
section 2, we first introduce the image denoising problem,
then we present our method of learning the prior over possible
images using normalizing flows, after which we will show our
unrolled proximal gradient scheme that uses the normalizing
flows prior as a prox. In section 3, we list the experimental
setup and the obtained results. We end the paper with a con-
clusion and discussion of possible future works in section 4.

2. METHODS

2.1. Image denoising

Image denoising can be cast in the following form:
y =X+, ey

where y is the noisy observed image and x is the desired
image, both expressed in vector form, and 7 is an additive
white Gaussian noise (AWGN) vector with zero mean and
standard deviation o,,. The ultimate goal is to remove noise
while preserving all the image characteristics (adhering to data
consistency). To this end, we employ maximum a-posteriori
(MAP) estimation:

Xy ap = argmaxp(x|y) oc arg maxp(y[x) pe(x),  (2)
where p(y|x) is the likelihood according to the observed image,

and py(x) is the image prior. Since noise follows a Gaussian
distribution with zero mean, we have p(y|x) ~ N'(u = x, 02).

MAP optimization leads to the following (negative log poste-
rior) minimization problem:

. o1
X = arg mlnﬁﬂy —x||% — log pa(x). 3)

We solve (3) in the following manner. First, we shall
use normalizing flows to learn an adequate prior py(x) over
possible images. Second, we employ deep algorithm unfolding
to accelerate and improve upon standard gradient descent or
quasi-newton based methods for (3) while at the same time
improve the learned prior throughout the iterations.

2.2. Normalizing flows priors

Normalizing flows [20] are generative models, that transform
a base probability distribution p(z) ~ AN(0,T) into a more
complex, possibly multi-modal distribution by a series of com-
posable, bijective, and differentiable mappings. Normalizing
flows can operate in two directions: the generative direction
which transforms a point in the (Guassian) latent space into the
more complex image space (x = gg(z)), and the flow direc-
tion, which maps images to the latent space (z = fy(x)). To
create a normalizing flow of sufficient capacity, many layers
of bijective functions can be composed together:

z=fo(x) = (fofy0...0f)(x), 4)

where ‘o’ denotes the composition of two functions, and 6 are
the parameters of the model.

Exact density evaluation of py(x) is possible through the
use of the change of variables formula, leading to:

log pe(x) = logp(z) + log | det D fy(x) |, (5)

where D is the Jacobian. The determinant of the Jacobian is
added here as we are working with probability density func-
tions, and we thus need to account for the change in density
caused by the transformation fy. Because we choose z to fol-
low a Gaussian distribution with zero mean and unity variance,
and the fact that x = gy(z), we can then perform proximal
update in z space:

. .1
2z = argmin—— ||y — go(2)||3 — log p(z),
N (©)

= argminl|y — go(2)||3 + A|lzl3,

where A is a parameter that balances the importance of ad-
hering to the measurements (data consistency) and the prior.
Note that we can also choose other distributions for z, e.g., a
Laplace distribution, in which case the /2 norm becomes an ¢,
norm.

In the rest of this paper we employ GLOW as our choice
for the normalizing flows prior. For details regarding its archi-
tecture and implementations (coding) we refer the reader to
the original paper by Kingma and Dhariwal [20] as well as the
paper by Asim et al.[25].
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Fig. 1. Comparison of the proposed flow-based proximal mapping with baselines based on standard U-net or ResNet proximal
mappings at noise levels o,, = 0.20 (in-distribution) and o,, = 0.25 (out-of-distribution).

2.3. Unrolled proximal gradient iterations

To solve the optimization problem in (6) we make use of
an iterative proximal-style algorithm that alternates between
gradient updates in the direction of the data consistency term
and pushing the solution in the proximity of the prior.

To derive our iterative scheme, we will alternate between
solving in x-space and z-space. Firstly, we will perform a data
consistency step in x-space:

gD = () (0 (5 (R, @)

where superscript (k) denotes the current fold and (%) is the
trainable step size. The image is then converted to the latent
space using:

Z(k:+1) — f‘g(k+1)(i(k+1)) (8)

The purpose of this conversion to latent space is so that we
may perform the proximal update P(-) using the z-space for-
mulation in (6):

(k+1) (k+1) (= (k+1) g+
2 =P ETT) = Ty
where A1) is a trainable shrinkage parameter. Intuitively,
this can be understood as pushing solutions into a high likeli-
hood regime (i.e. closer to the origin in z). Finally, we convert
from latent space back to signal space

k
AR

and then continue on to the next iteration.

This iterative algorithm is unfolded as a K-fold feedfor-
ward neural network that is trained in an end-to-end fashion.
After K folds the final estimate x is produced from the latent
space after data consistency:

= 509,

€))

kD)

(10)

L

2.4. Pre-training and initial guess

To aid with the stability during end-to-end training we first
pre-train GLOW on a set of clean images to learn a generic
density function using 5. After pre-training, we embed these
generic priors into the unrolled architecture, and untie their
parameters. By then training the model using end-to-end super-
vised learning, we allow the GLOW model at each fold to be
distinct and adapt to the denoising task. Moreover, we use the
pre-trained GLOW model to yield a powerful initial guess for
x(9). As we know that the most likely image lives at the origin

of the Gaussian latent space, we set x(0) = géo) (20 = 0).

3. EXPERIMENTS

We assess our framework’s performance for the denoising task
on images of human faces, using the CelebA-HQ dataset[29]
that consists of 27,000 training, 1,500 validation, and 1,500
test images. The images are resized to 64 x 64 pixels with
3 (RGB) channels. We manually corrupt these images using
AWGN and train our unfolded proximal gradient network for
k = 4 folds using a Mean Square Error (MSE) loss.

We employ the Adam optimizer with (Ir = 1e=5, 8; = 0.9,
B2 = 0.999, and € = 1le — 8). Moreover, we train the learnable
step size 11(¥), and shrinkage factor \(*) with a higher learning
rate, namely le~2. Early stopping is used if the validation
loss does not decrease for 5 consecutive epochs. Leveraging
the invertible nature of the GLOW model, we strongly reduce
train-time memory of the full unfolded architecture using the
approach by Putzky and Welling [30]; instead of storing all
intermediate activations for back-propagation, we recalculate
them during backpropagation.

We compare our normalizing flows prior, to two alternative
neural proximal mappings; one based on ResNet [26], and one
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Table 1. Denoising results of deep unfolding with flow-based proximal mapping compared to two strong baselines. Values
reported are mean Peak Signal to Noise Ratio (PSNR) of the reconstructed images across the CelebA-HQ[29] test set.

Denoising ResNet Prox  U-Net Prox  Glow Prox (ours)
[26] [16]

n~N(u,=0,0, =0.10) 28.567dB 29.228 dB 29.423 dB

n~N(u, =0, 0, =0.15) 28.029 dB 28.920 dB 29.009 dB

n~N(n =0, 0, =0.20) 27.054dB 28.180dB  28.236 dB

n~N(u, =0, 0, =0.25) 25489 dB 25.770 dB 26.633 dB

based on a U-net. Note that for a fair and direct comparison,
we focus on typical alternatives within the unfolded proximal
gradient framework. This allows a straightforward assessment
of the proposed (task-adapted) normalizing flows priors be-
yond the architectural advantages of unfolding the proximal
gradient algorithm itself.

The ResNet proximal baseline follows the structure pro-
posed by [26]. Each residual block consists of two convolu-
tional layers with 3 x 3 kernels and 128 feature maps, fol-
lowed by batch normalization and ReLU activations. These
were followed by three convolutional layers with 1 x 1 kernels,
where the first two made use of ReLU activations. The second
proximal baseline is a standard U-net [16]. The U-net is a
convolutional neural network that follows a typical encoding-
decoding architecture, with extra skip connections between
each input and output at every encoding level. Here we make
use of a Pytorch U-Net implementation.

We trained all three proximal methods, based on ResNet,
U-Net, and the proposed GLOW prox, for AWGN with a
standard deviation of o,, = 0.20. We then analyzed perfor-
mance for four different standard deviations, ranging from
o, = 0.10 to o,, = 0.25, (see Table 1). Our proposed method
outperforms the baselines not only on the in-distribution noise
levels, but also on the out-of-distribution noise levels. Qualita-
tively, this also becomes apparent from the examples displayed
in Fig. 1. The reconstructions when using our GLOW prox
are sharper, and details (for example, the hair) are better pre-
served.

4. CONCLUSION

In this paper, we proposed an unfolded neural proximal gradi-
ent descent framework with a normalizing flow prior for image
denoising. We demonstrated that our proposed framework
outperforms the two strong baselines on both in-distribution
and out-of-distribution noise levels. While unfolding and end-
to-end training enables fitting to (and exploiting) a specific
data distribution, it also makes it more sensitive to out of distri-
bution measurements. We show that generative flow proximal
operators suffer less from this problem than standard discrimi-
native U-Net or ResNet ones, and thus have advantages in real
world applications of unfolding. This does not mean that these
denoisers work poorly when used in a plug-and-play setting.

In this manuscript we only explored the use of our method
on image denoising. However, multiple challenges can be
cast in the same way as equation 1 by adding a measurement
matrix A # I, e.g., inpainting or deblurring. Future work
would include experiments on these other types of problems.
Moreover, future work could also include analysis on out-of-
distribution performance and the impact of pre-training the
GLOW prior.
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