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Abstract. The Colonoscopic Withdrawal Time (CWT) is the time re-
quired to withdraw the endoscope during a colonoscopy procedure. Es-
timating the CWT has several applications, including as a performance
metric for gastroenterologists, and as an augmentation to polyp detec-
tion systems. We present a method for estimating the CWT directly from
colonoscopy video based on three separate modules: egomotion computa-
tion; depth estimation; and anatomical landmark classification. Features
are computed based on the modules’ outputs, which are then used to clas-
sify each frame as representing forward, stagnant, or backward motion.
This allows for the optimal detection of the change points between these
phases based on efficient maximization of the likelihood; from which the
CWT follows directly. We collect a dataset consisting of 788 videos of
colonoscopy procedures, with the CWT for each annotated by gastroen-
terologists. Our algorithm achieves a mean error of 1.20 minutes, which
nearly matches the inter-rater disagreement of 1.17 minutes.

Keywords: colonoscopy, detection, visual odometry, withdrawal time

1 Introduction

Colorectal Cancer (CRC) claims many lives per year [2,1]; however, as is well
known, CRC may be prevented via early screening. In particular, the colono-
scopy procedure is able to both detect polyps in the colon while they are still
precancerous, and to resect them. There is, however, some variation in the qual-
ity of colonoscopy procedures, as performed by different gastroenterologists. This
paper is concerned with one aspect which underlies this variation, namely the
time spent by the endoscopist during the withdrawal phase of the colonoscopy.
Background and Motivation By way of background, we briefly describe the
structure of a colonoscopy. When the procedure commences, the goal of the
physician is to insert the colonoscope all the way to the end the colon, known as
the cecum; see Fig. 1. This is known as the colonoscopic insertion. The time it
takes to reach the cecum is known as the Cecal Intubation Time (CIT). During
this process the physician moves the endoscope both forwards and backwards.
From time to time only the wall of the colon is seen by the camera.
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Fig. 1. The map of the colon, adapted with minor modifications from wikipedia. Our
goal is to estimate the Colonoscopic Withdrawal Time (CWT), the duration elapsed
from the time the colonoscope reaches the cecum until it has been entirely withdrawn.

Once the cecum has been reached the physician starts to slowly extract the
colonoscope; the goal in this stage is to detect the polyps.5 This phase is easier
from the navigation point of view and the motion is usually backwards. Forward
motion generally only occurs when a polyp is detected, examined and extracted.
Thus, there is a clear distinction between colonoscopic insertion and colonoscopic
withdrawal phases. The duration of the colonoscopic withdrawal is referred to
as the Colonoscopic Withdrawal Time (CWT).

In this paper, we are particularly interested in measuring the CWT, as the
CWT can impinge directly upon the successful detection and removal of polyps.
Specifically, success in polyp detection is often measured by the Adenoma De-
tection Rate (ADR), defined as the fraction of procedures in which a physician
discovers at least one adenomatous polyp. Several studies have found a positive
correlation between the CWT and rates of neoplasia detection [7,42]. As a result,
current guidelines recommend that the CWT be at least 6-7 minutes in order
to achieve the desired higher ADR [8,33,26]. Higher ADR is directly linked to
lower rates of interval CRC (a CRC which develops within 60 months of a neg-
ative colonoscopy screening) [24]; thus, ensuring a sufficiently high CWT is of
paramount importance.
Overview of the Proposed Method Our goal is to estimate the CWT. In
order to do so, we seek to find the first time point in the procedure where
the operator stops inserting the endoscope deeper into the colon and starts the
colonoscopic withdrawal phase. Typically, this happens at the cecum, see Fig. 1.

Our technique relies on the extraction of three key quantities: the egomotion
of the camera, depth estimates of the colon, and detection of anatomical land-
marks. The use of the egomotion is clear: it allows us to assess in which direction
we are moving, which is an obvious differentiator between the colonoscopic in-
sertion phase and the colonoscopic withdrawal phase. The use of the depth maps
is more subtle: they help to distinguish between frames in which the camera is
adjacent to the colon (which occur more often in colonoscopic insertion) and
frames which see an unobstructed view of the colon (which occur more often

5 Cheng et al. [11] studied the effect of detecting polyps during colonoscopic insertion
and found it did not improve ADR.
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in colonoscopic withdrawal). The use of landmark detection is straightforward:
the presence of the relevant landmarks near the cecum – namely the appen-
diceal orifice, ileocecal valve, and triradiate fold – constitutes strong evidence
the withdrawal phase has begun.

Our method then learns the optimal way of combining features based on these
three key quantities in order to best estimate the probability that any given frame
is in one of the following three phases: {forward, stagnant, backward}. Precise
definitions of these three phases are given in Section 3; in brief, forward corre-
sponds to the time moving forward from the rectum to the cecum; stagnant to
the time spent inspecting the cecum; and backward to the time moving backward
from the cecum to the rectum. Based on the per frame probabilities, we propose
an optimization problem for determining the optimal temporal segmentation of
the entire video into phases, which in turn gives the CWT. The main reason
that this problem is challenging is that the accuracy of the estimated egomotion
and depth images is not always high. We perform ablation studies to carefully
show the role each of these features plays in the estimate.
Applications There are several uses of this segmentation procedure. The first
use is as a performance metric for GIs. As we have already mentioned, the
standard guidelines require that the physician spend at least six minutes after
the ileocecal valve has been detected. In such scenarios the withdrawal time
should not be measured manually nor by chronometric instruments. However,
the amount of time the physician has actually spent can be easily estimated
from the segmentation results, and used as a performance metric. Second, the
system could be used in combination with existing automatic polyp detection
systems, such as those described in [36,38]. In particular, some physicians prefer
to detect and remove polyps only in the colonoscopic withdrawal, thus the polyp
detection could be optionally turned off during the colonoscopic insertion phase.
Indeed, given that our method is based on visual odometry computations, it
could in principle store the approximate locations of any polyps detected in the
colonoscopic insertion; then in the colonoscopic withdrawal when the physician
returns to these locations she can be alerted to the existence of the polyp and
take more care in finding it. Third, systems for detecting deficient colon coverage
such as [17] could similarly be turned off during the colonoscopic insertion.

A final use case for such a system is as a tool for training novice endo-
scopists. In [25], it was shown empirically that as training proceeds, the CIT
becomes shorter. This shows that the trainee becomes more proficient in navi-
gation; however, this is not necessarily correlated to an improvement in ADR.
Thus, navigation and polyp detection are two different capabilities which have
to be mastered and the segmentation of the procedure can help in analyzing
their proficiency separately.
Contributions and Paper Outline The main contributions of the paper are:

1. We propose a novel approach to withdrawal time estimation based on the
combination of egomotion, depth, and landmark information.

2. We collect a gastroenterologist-annotated dataset of 1,447 colonoscopy videos
for the purposes of training and validation.
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3. We validate our algorithm on this dataset, showing that the algorithm leads
to high quality segmentations. Specifically, our error is smaller in magnitude
than inter-physician disagreement.

The remainder of the paper is organized as follows. Section 2 reviews related
work. Section 3 describes our proposed method, focusing on egomotion and
depth computation; detection of anatomical landmarks; derivation of features
from the foregoing; a technique for combining these features into a per-frame
phase classifier; and a method for video phase segmentation based on this classi-
fier. Section 4 describes our dataset and presents experimental results, including
ablation studies. Section 5 concludes the paper and discusses future work.

2 Related Work

Withdrawal Time Estimation We begin by discussing [12], which has ad-
dressed a very similar problem. The goal of this work is to detect the Cecal
Intubation Time (CIT) based on the motion of the endoscope. The assumption
made is that when the cecum is reached the magnitude of the motion is small.
The relative motion is estimated between consecutive frames using a network
which estimates the optical flow between them based on the Horn–Schunk algo-
rithm [23]. Each motion is then classified as +1 for insertion, -1 for withdrawal,
and 0 for stop. A section of the video where the sum of these values is lowest
is assumed to be the turning point. One of the problems that must be dealt
with is that in such videos, many of the frames are of low quality. Thus, at first
frames are classified as informative or non-informative [5,13] and the optical flow
algorithm is run only on the informative frames. This is due to the fact that on
non-informative frames the estimated motion is usually classified as stop. In [28],
the authors present a two-stage method for detecting the withdrawal point, i.e.,
the moment when the endoscope begins to withdraw. First, a deep network is
trained to classify each frame whether it is an image of the ileocecal valve, the
opening of the appendix or it contains background. Second, the trained classifier
is used to generate a time series consisting of the per-frame ileocecal valve class
probabilities. This temporal signal is then processed with sliding windows to
identify the first window with a sufficient number of frames recognized as the
ileocecal valve. Given this window, the withdrawal point is estimated as the last
frame of the window.

Egomotion and Depth Estimation The first step of our algorithm runs a
visual odometry and depth estimation procedure on a single colonoscopy video.
In practice it is also possible to run these procedures separately. Visual odom-
etry algorithms only recover the relative motion between consecutive frames.
Classical methods extract and match feature points using descriptors such as
SIFT or ORB and estimate from them the relative motion. A review of these
methods can be found in [31,32]. Deep learning visual odometry also exists, for
example [39]; and specialized visual odometry for endoscopy videos have also
been developed [30,37,3].
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Fig. 2. The main blocks of the estimation pipeline.

Since relative motion and depth images are closely related as will be de-
scribed below, deep learning methods which recover them together have been
developed yielding superior results. In initial methods the training was per-
formed in a supervised manner, where the ground truth depth and relative mo-
tion were available [4,40,44]. Following this unsupervised methods were devel-
oped [45,27,41,43,21]. The possibility of learning in an unsupervised manner is
extremely useful in our case since for colonoscopy videos, ground truth depth
and motion are not available. We obtain our depth images and relative motion
using a state of the art method of that type [21], which will be reviewed below.
Phase Detection Our work may be thought as a type of phase detection on
colonoscopy procedures, where there are three phases. There has been some
related work on phase detection in medical procedures. In [34], the video frames
are analyzed using a network based on AlexNet. The output of the network are
detected tools and the phase to which the frame belongs. An HMM is then used
to classify the phase of the frame taking into account temporal constraints. In a
more recent work [16], the backbone is replaced with more modern networks and
the HMM is replaced with a multi-stage convolutional network. This algorithm
was used for analyzing surgery stages in [14]. A very recent validation of surgical
phase detection on a much larger dataset is presented in [6].

3 Methods

3.1 The Estimation Pipeline

Our pipeline is illustrated in Fig. 2. It consists of three deep neural network
modules which take as inputs RGB frames, the outputs of which are combined to
generate a low dimensional representation. Following this stage, the pipeline has
three sequential blocks which take the processed low dimensional representation
to generate an estimate of the CWT. More specifically, the stages are as follows:
Representation Extraction: The RGB frames are first passed (in parallel)
through deep neural network modules to transform them into a succinct repre-
sentation. The models are egomotion and depth (Section 3.2), and a landmark
classifier (Section 3.3). The exact representations extracted from each of these
modules is described in Section 3.4.
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Feature Filtering: The low dimensional representation derived above are noisy
per-frame features. We therefore filter these features to make them more informa-
tive, by computing exponentially moving averages with different spans; absolute
values; and running maxima (Section 3.5).
Per-Frame Phase Classifier: Given the robust features thus computed, this
block combines the features into per-frame algorithmic phase probability esti-
mates (Section 3.6).
Change-Point Detector: Given the per-frame probability estimates, we com-
pute the change point which induces maximum likelihood (Section 3.7).

We now expand upon each of these stages of the pipeline.

3.2 Unsupervised Visual Odometry

From an RGB video of a colonoscopy, our goal is to estimate the relative motion
between consecutive frames; and additionally, for each frame its corresponding
depth image. Given that the vast majority of current endoscopes are monocular
we consider the monocular setting. We adopt the struct2depth method [10,9,21],
which is unsupervised. This is beneficial in the colonoscopy setting, as neither
the ground truth position of the colonoscope nor the depth image are available
for training. Furthermore, the method does not assume that the camera is cali-
brated, which can be useful in cases where the camera parameters are unknown.

Our method, like many algorithms for unsupervised depth and motion es-
timation [45,20,35,29,41,21], is based on the following property: corresponding
points in two frames usually have very similar RGB values. This is especially
true when the relative motion between the frames is small, as is the case in
consecutive video frames. This property can be used to define a loss function
known as the view synthesis loss, which combines both the egomotion and the
depth estimated by the algorithm.

Concretely, the network consists of several sub-networks, as shown in Fig. 3.
The depth estimation network is given as input It, the RGB frame of time t
and produces the depth image Dt. In addition, given the image pair It−1 and
It, the pose network produces the relative pose / egomotion. Specifically, the

Fig. 3. The view synthesis loss and corresponding network architecture. See accompa-
nying description in the text.
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pose is defined as the rigid transformation (rotation matrix R and translation
vector t) from the current frame t to the previous frame t − 1. An additional
intrinsics network can be used to produce an estimate of the internal calibration
K; alternatively, a pre-learned K can be given as input.

The relationship between the geometric location of corresponding pixels in
the two frames may be expressed by combining the depth, pose, and intrinsics
information as:

z′p′ = KRK−1zp+Kt (1)

where p and p′ are the corresponding pixels in homogeneous coordinates and
z and z′ are their corresponding depth values. The view synthesis loss then
compares the RGB values of the pixels at p in image It−1 and p′ in image It. In
particular, the loss function is the L1 loss of the RGB difference combined with
an analogous loss based on structural similarity (SSIM).

In practice, there may sometimes be pairs of pixels for which Equation (1)
does not hold, for example due to self occlusion in one frame or due to non-rigid
motion of the colon. In such cases, when the relative transformation is applied
to one depth image, there will be a difference in the corresponding depth in
the other depth image. These depth differences are incorporated into the loss
function, effectively reducing the weight for these pixel pairs.

3.3 The Landmark Prediction Module

As shown in Fig. 1, the cecum has several distinctive features which when de-
tected may indicate the end of the insertion phase and beginning of withdrawal.
Appendiceal Orifice and Triradiate Fold Both of these landmarks (see
Fig. 4) reside inside the cecum and may therefore be used as indicators of arrival
at the cecum. We train a dual-head binary classification model to predict the
presence of these two landmarks within the frame.

Fig. 4. Anatomical landmarks. Left to right: appendiceal orifice; ileocecal valve; cecum;
triradiate fold.

Ileocecal Valve This landmark (see Fig. 4) is located just outside of the cecum
and is much less distinctive than the other two. This lack of distinctiveness
makes annotation of individual frames in which the ileocecal valve appears quite
challenging. We deal with this by labelling the overall temporal region in which
the ileocecal value is located; that is, we annotate an initial frame before which
the ileocecal valve does not appear, and a final frame after which it does not
appear. We then use this temporal region as weak supervision in a Multiple
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Fig. 5. Illustration of the role of various features in computing CWT. In both graphs,
the triradiate fold is first observed at the green vertical line and last observed at the
red vertical line; this denotes the boundaries of the time spent in the cecum. Left:
egomotion. The cumulative sum of the z-translation egomotion (blue) can be seen to
increase while the scope is inserted (before the green line), to remain constant in the
cecum (between green and red), and to decrease during withdrawal (after the red line).
Right: landmarks. The cumulative maximum of the appendiceal orifice classifier (blue)
increases significantly in the cecum. See accompanying description in the text.

Instance Learning (MIL) [15] scheme where the model learns to predict if a
frame has any distinctive features that are common to the cecum region.

Both of the networks - the dual head classification network for the appen-
diceal orifice and triradiate fold, and the MIL classifier for the ileocecal valve –
share a common feature extractor backbone, a Resnet-50 CNN [22]. Each then
has a separate fully-connected layer mounted on top of the resulting embedding
to yield the probabilities for each of the three landmark features. All networks
are trained together in an end-to-end fashion.

3.4 Representation Extraction

Thus far, we have described three conceptually different sources of feature rep-
resentation: egomotion and depth are generated from a module described in
Section 3.2, while the landmark detection module is described in Section 3.3.
We now summarize the actual representations:

Egomotion: For each pair of consecutive frames, the egomotion estimate has 3
translation coordinates (x, y, z) and 3 rotation coordinates (φx, φy, φz), which are
Euler angles. The egomotion estimate reflects the camera motion with respect
to the camera coordinates.

Depth: For each frame, the depth map estimate consists of an entire image,
where each pixel contains the depth estimate corresponding to that pixel.

Landmarks: For each frame and landmark (ileocecal valve; appendiceal orifice;
and triradiate fold), the landmark feature is the classifier’s probability estimate
of the landmark’s presence in the frame.
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We now give some intuition as to why each of these features can play a role in
the estimation of the Colonoscopic Withdrawal Time, beginnning with egomo-
tion. Logically, a positive z-axis egomotion should indicate forward motion, while
negative z-axis motion should indicate backward motion. This idea is illustrated
on the left side of Figure 5, which shows a graph of the cumulative sum of the z-
translation egomotion, overlaid with a ground truth annotation of the triradiate
fold (cecum area). The cumulative sum of the z-translation egomotion, which
we call the z-cumsum, can be seen to have the following rough characteristics:
(1) there is a small positive z-cumsum while the scope moves forward; (2) there
is roughly zero z-cumsum while the scope is in the cecum area; and (3) there is
a large negative z-cumsum while the scope moves backward.

The depth maps can be useful in estimating the CWT, in that they help
to distinguish between (1) frames in which the camera is adjacent to the colon,
which occurs more often in colonoscopic insertion; and (2) frames which see an
unobstructed view of the colon implying more pixels with high depth values,
which occurs more often in colonoscopic withdrawal.

Finally, by definition the landmark features are extremely indicative of having
reached the cecum. A clear view of the appendiceal orifice or the triradiate fold
is strong evidence the withdrawal phase has started. The right side of Figure 5
shows that the landmark classifier for the appendiceal orifice is high around the
cecum area. The cumulative maximum of the classification probabilities creates
a very robust feature, which reaches its maximum once the navigation away from
cecum area has begun.

3.5 Feature Filtering

Since raw per-frame features are extremely noisy on their own, we apply smooth-
ing filters to aggregate the values of multiple frames. Specifically, the exponential-
weighted-moving-average of a discrete signal s, denoted by ewma (s), is calcu-
lated as follows:

ewma (s) [0] = 0

ewma (s) [i] = (1− α) · ewma (s) [i− 1] + α · s[i]

Here α determines the effective memory span: a span of m steps uses α = 2/m.
Given the above definition, we define smoothed versions of each of the features
described in Section 3.4 as follows:
Smoothed z-Translation: Exponentially weighted moving average of egomo-
tion’s z-translation, where the moving average is taken with a variety of length
spans: 1, 2, 3, and 4 minutes.
Smoothed Depth Quantiles: For each depth map, first the (0.1, 0.25, 0.5, 0.75, 0.9)-
quantiles are extracted. Then, the quantiles are smoothed using exponentially
weighted moving average with two different length spans: 2 and 4 minutes.
Peaked Smoothed Landmarks: The running maximum (cumulative max-
imum) of exponentially weighted moving average of a landmark’s probability
estimates. For each of the ileocecal valve, appendiceal orifice, and triradiate fold
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landmarks, the moving average is taken with a variety of length spans: 8, 15,
and 30 seconds.

Note that all filtered features at time t are computed using only representa-
tions observed up to time t. Moreover, all filtered features for frame t require only
frames t− 1 and t as well as the the filtered features for frame t− 1. Therefore,
the computation is well suited for an online setup.

3.6 Per-Frame Algorithmic Phase Classification

As the penultimate stage of our algorithm, we learn a per-frame classifier for
the phases of the colonoscopy procedure. One of the useful side benefits of learn-
ing a per-frame classifier is that doing so greatly simplifies the pipeline, in an
engineering sense. We define the following three phases:

1. forward marks the navigation from the rectum to cecum area. This phase
is characterized by forward motion (positive z-translation); many frames see
the colon’s walls; and no landmarks are detected.

2. stagnantmarks the start of the screening process (reaching the cecum area).
This phase is characterized by little movement (z-translation is approxi-
mately 0) and possibly one or more landmarks have been detected.

3. backward marks the withdrawal from the cecum area. This phase is charac-
terized by strong backward movement (negative z-translation); many frames
view deep regions (the lumen of the colon); and one or more landmarks have
been detected.

Thus, the colonoscopic insertion phase consists of the forward phase, while the
colonoscopic withdrawal phase consists of the union of the stagnant phase and
the backward phase.

For the classification model we use gradient boosted decision trees [18,19] on
the filtered features from Section 3.5. The classifier is trained by minimizing the
standard cross-entropy loss. The resulting model generates a probability estimate
for each of the three algorithmic phases (which sum up to 1). The reason for
choosing a gradient boosted decision trees over a deep-learning model is that at
this point we are left with a small number of features and a small number of
(relatively independent) samples. Moreover, the separation into modules greatly
simplifies the training.

To generate the training data each procedure video is sampled at a fixed
rate. Each frame’s weight is set to account for duration variability. Specifically,
the total weight of samples for a specified video is fixed: longer videos do not
influence the training more than shorter videos. At inference time, a probability
estimate is generated for every frame.

3.7 Change-Point Detection

The phases in an actual colonoscopy procedure form a sequence of contiguous
segments with known order: forward→ stagnant→ backward. Using this order
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Fig. 6. Illustration of the per-frame classifier and the log likelihood of the change point.
In both graphs, the triradiate fold is first observed at the green vertical line and last
observed at the red vertical line; this denotes the boundaries of the time spent in the
cecum. Left: the per-frame classifier probability of being in the forward phase. Observe
that around the entrance to the cecum area the probability is very close to 0.5 Right:
the log likelihood L(t) of the change point vs. time. The estimated change point, which
occurs at the maximum of L(t), is shown with a black vertical line, and is very close
to the manually annotated change point shown in green.

constraint, we seek a segmentation of the per-frame probability estimate which
yields the maximum likelihood solution.

Let p̂c,t denote the probability estimate for phase c at frame t. For two phases,
denote by L(t) the log-likelihood of the change-point occurring at time t. Then
we may write

L(t) =
∑

t′≤t

log p̂1,t′ +
∑

t′>t

log p̂2,t′

The log-likelihood (and the rest of the analysis) can be similarly extended into
two splits and three phases.

The optimal change point, t̂, is chosen such that t̂ = argmaxt L(t). (If there
are multiple such points, we take the earliest one.) We now present an online
computational method for t̂. To this end, we define V [c, t] as the value of the
optimal log-likelihood for the 1, 2, . . . , t frames which end with phase c. We have
V [1, 0] = V [2, 0] = 0 and

V [1, t] = V [1, t− 1] + log p̂1,t (2)

V [2, t] = max (V [1, t− 1], V [2, t− 1]) + log p̂2,t

Finally, L(t̂) = V [2, T ] where T is the index of last frame. The value t̂ can
be retrieved by setting t̂ = t where t is the last index for which V [1, t − 1] >
V [2, t−1]. Note that Equation (2) can be easily extended to accommodate 3 (or
any) number of phases.

L(t) is visualized for a given sequence in Fig. 6. In this figure, we used the
colonoscopic insertion phase as the first segment and the colonoscopic withdrawal
phase (union of the stagnant phase and backward phase) as the second segment.
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4 Results

4.1 The Dataset

The dataset consists of real de-identified colonoscopy videos (acquired from Or-
pheus Medical) of procedures performed at an academic hospital. In total, there
are 788 videos. All videos were recorded at 30 frames per second, with a com-
pression rate of 16 mbps. The distribution of frames in each phase is: forward
- 45.2%; stagnant - 12.1%; backward - 42.7%. To maximize the data usage, we
employ 5-fold cross validation on the entire set of videos.

The videos were annotated offline by gastroenterologist annotators, drawn
from a pool of four with 4, 7, 7, and 9 years of experience. For every landmark,
the annotators were asked to carefully mark the first and last frame in which
the landmark is visible (for every contiguous period separately), as well as the
the time point which marks the start of the withdrawal phase.

4.2 Hyperparameters

The hyperparameters for Section 3.2 and Section 3.3 were chosen separately
(each for its own sub-task). We focus here on the hyperparameters for the per-
frame classifier Section 3.6. The video was sub-sampled at a fixed rate of a frame
every 15 seconds. Technically, computational resources allow for the training of
the per-frame classifier without sub-sampling. However, consecutive frames are
highly correlated and their inclusion does not improve overall metrics. Moreover,
sub-sampling is useful in stochastic gradient boosting models to create diversity.
The other hyperparameters relate to gradient boosting, namely: the number of
trees; the maximum tree depth; the learning rate (0.03); and the subsample prob-
ability (0.5). The effect on performance of the choice of both the number of trees
and maximum tree depth is presented in a separate discussion in Section 4.4.

4.3 Results

We report various statistics for the absolute error of the CWT. Specifically, if
the ground truth time is t and the estimated time is t̂, then the absolute error
is denoted ∆t = |t̂ − t|. To capture the error distribution we use: (1) the mean
absolute error (MAE) and (2) the ith percentile / quantile, which we denote
as qi(∆t). To reduce variability, each estimate was taken as the median of 9
bootstrap runs. The results reported are attained using the hyperparameter
settings described in Section 4.2, along with 1000 trees with maximum depth 1.
(The role of the latter hyperparameters is analyzed in Section 4.4.)

The results are reported in Table 1, where times are reported in minutes.
The MAE is 1.20 minutes, while the median absolute error is 0.58 minutes, and
the 75th percentile is 1.32 minutes. In order to calibrate the size of these errors,
we compared them with the disagreement between gastroenterologist experts.
We provided 45 videos to be analyzed by 3 gastroenterologists and measured
the difference between the earliest and latest of the 3 annotations, which we



Estimating Withdrawal Time in Colonoscopies 13

Table 1. Statistics for the CWT error in minutes: mean and various percentiles. Notice
that the algorithm error and the annotator spread are roughly the same.

mean 50th 75th

|∆t| = Algorithm Error 1.20 0.58 1.32
Annotator Spread 1.17 0.62 1.38

Fig. 7. Sensitivity of the algorithm to hyperparameters: number of trees and maximum
tree depth. In each case, both MAE and the 75th percentile error are plotted vs. number
of trees. Left: maximum tree depth of 1. Right: maximum tree depth of 2.

refer to as the annotator spread. The mean annotator spread is 1.17 minutes,
while the median annotator spread is 0.62 minutes; and the 75th percentile is
1.38 minutes. Note that the algorithm error and the annotator spread are quite
similar in value. More specifically, in the case of the median and 75th percentile,
the annotator spread is higher than the algorithm error; while in the case of the
mean, the algorithm’s error is slightly higher.

4.4 Sensitivity Analysis

We now study the sensitivity of the estimator to the choice of hyperparameters,
specifically the number of trees used in the gradient boosting algorithm, as well
as the maximum depth of these trees. Fig. 7 shows graphs of the performance
- as measured by both MAE as well as the 75th percentile error q75(∆t) - vs.
the number of trees. There are two separate graphs, corresponding to maximum
tree depths of 1 and 2. We note that the graphs are not entirely smooth due to
the optimization performed in the change-point detection algorithm (see Section
3.7). Nonetheless, overall there is little variability in the metrics, especially once
the number of trees has increased past 500 (for depth 1) or 300 (for depth 2).
Thus, it is strongly evident that the estimate is quite robust to the choice of
these hyperparameters.

4.5 Analysis of Feature Importance

We now turn to analyzing the role of each of the features in the algorithm, in
particular their role in the per-frame classifier. To assess the role of each feature,
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we use the relative importance heuristic described in [18], which we report in
Table 2. We see that the egomotion is quite important, accounting for 40.7%
of the total contribution. Furthermore, the landmarks are also very important,
accounting for a total of 56.3% between the three of them; the triradiate fold is
the most important, followed by the ileocecal valve and the appendiceal orifice.
Finally, the depth appears to be less important, accounting for only 3.0%.

4.6 Ablation Studies

We continue our analysis of the algorithm by performing an ablation study. In
particular, we test the effect on performance of removing each of the features one
by one, and then retraining the per-frame classifier. The features we study are:
(1) egomotion (2) depth (3) all landmarks considered together. In the case of
each retraining, we used maximum tree depth equal to 1 and chose the number
of trees which minimized q75(∆t) for each ablation test.

The results are shown in Table 3. Note that by removing the landmarks,
the performance suffers the most: the MAE increases from 1.20 to 1.85, with a
concomitant increase in q75(∆t). Next is the egomotion, followed by the depth.
Interestingly, the ablation study shows that the depth is still quite important:
removing it increases the MAE from 1.20 to 1.33, a 10.8% relative increase.

Table 2. Feature importance Analysis.

Feature Importance

Egomotion 0.407
Depth 0.030

Appendiceal orifice 0.090
Ileocecal value 0.331
Triradiate fold 0.143

Table 3. Ablation studies. Performance is
shown when each feature is removed.

Ablation MAE q75(∆t)

None 1.20 1.32
z-translation 1.42 1.68

Depth 1.33 1.42
Landmarks 1.85 2.08

5 Conclusions

We presented a system for estimating the colonoscopic withdrawal time in col-
onoscopy procedures. The method is based on combining features from three
disparate sources: egomotion, depth, and landmark classification. The resulting
algorithm has been validated on a GI-annotated dataset, and has demonstrated
an error which is smaller than the inter-rater disagreement. As a result, the al-
gorithm shows promise in a variety of applications, including as a performance
metric for GIs, as an add-on to existing polyp detection systems, and as part of
a training system for novice endoscopists.
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