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Spontaneous parametric downconversion (SPDC) in quantum optics is an invaluable resource for the realization of
high-dimensional qudits with spatial modes of light. One of the main open challenges is how to directly generate a
desirable qudit state in the SPDC process. This problem can be addressed through advanced computational learning
methods; however, due to difficulties in modeling the SPDC process by a fully differentiable algorithm, progress has
been limited. Here, we overcome these limitations and introduce a physically constrained and differentiable model,
validated against experimental results for shaped pump beams and structured crystals, capable of learning the relevant
interaction parameters in the process. We avoid any restrictions induced by the stochastic nature of our physical model
and integrate the dynamic equations governing the evolution under the SPDC Hamiltonian. We solve the inverse prob-
lem of designing a nonlinear quantum optical system that achieves the desired quantum state of downconverted photon
pairs. The desired states are defined using either the second-order correlations between different spatial modes or by
specifying the required density matrix. By learning nonlinear photonic crystal structures as well as different pump
shapes, we successfully show how to generate maximally entangled states. Furthermore, we simulate all-optical coherent
control over the generated quantum state by actively changing the profile of the pump beam. Our work can be useful for
applications such as novel designs of high-dimensional quantum key distribution and quantum information processing
protocols. In addition, our method can be readily applied for controlling other degrees of freedom of light in the SPDC
process, such as spectral and temporal properties, and may even be used in condensed-matter systems having a similar
interaction Hamiltonian. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION

The penetration of advanced machine learning (ML) methods
into physics has led to far-reaching advances in both theoretical
predictions and experiments, yielding exciting and interesting
new results [1–6]. Some of the most interesting progress has come
from the solution of inverse problems [7] aimed at finding novel
experimental setups that produce a desired physical observable
[8–18]. Nevertheless, there are still physical phenomena, particu-
larly in quantum physics, that have not yet benefited from this
progress. This may be attributed at least partially to the lack of
appropriate computational tools for modeling complex quantum
systems, and in some cases to the stochastic dynamics involved in
modeling quantum phenomena such as spontaneous processes and
fluctuations of quantum fields [19–25].

One important branch of quantum physics that might benefit
significantly from the adoption of inverse design algorithms is

quantum optics [26,27]. Quantum optics has proven to be an
invaluable resource for the realization of many quantum tech-
nologies, such as quantum communication [28–31], quantum
computing [32–35], and cryptography [36–40]. A prominent rea-
son for this is the availability of sources for generating nonclassical
light [27], which are mainly based on nonlinear interactions [41].
The most prevalent of these processes is spontaneous parametric
downconversion (SPDC) in second-order nonlinearχ (2) materials
[42]. The nonlinear coefficient of ferroelectric materials can be
modulated by electric field poling in two out of the three crystal
axes [43,44]. Recently, this capability was extended to enable
modulation in all three axes using focused laser beams [45–53].
3D nonlinear photonic crystals (NLPCs) offer a promising new
avenue for shaping and controlling arbitrary quantum correlations
between photons. This new technology introduces additional
degrees of freedom for tailoring the quantum state of structured
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photon pairs [54–62]. Solving the inverse quantum optical design
would make it possible to find the optimal physical parameters
of the system, such as the pump beam profile and the 2D or 3D
NLPC structures that yield the desired quantum state. These
capabilities can be used for the generation of maximally entangled
photonic states of arbitrary dimensionality that allow stronger
violation of generalized Bell’s inequalities, the encoding of larger
capacities of quantum information on light [63], and improved
security in quantum key distribution [38,64,65].

If we wish to employ learning-style optimization methods for
problems in quantum optics, it is crucial to have a good physical
model of the quantum optical process in question and integrate it
into the algorithm itself [2,3,6,15,66–69]. The model should ide-
ally encompass the relevant conservation laws, physical principles,
and phenomenological behaviors. Such physically constrained
models will ensure convergence to physically realizable solutions,
reduce the parameter search, improve the predictive accuracy and
statistical efficiency of the model, and allow for faster training
with improved generalization. However, there are obstacles to
incorporating learning-style optimization methods into quantum
optics while still properly capturing the physics. To account for
general optical medium geometry, diffraction, dispersion, and
non-perturbative effects in non-classical light generation (such as
SPDC), accurate simulation schemes must be employed that go
beyond the scope of the more frequently used analytic calculations
[42,54,7071,]. However, such models—which are more appeal-
ing for the inverse design of complex optical media—are often
stochastic [20,25,71,]. The stochastic nature of the problem, also
prominent in other physical fields such as those that employ Monte
Carlo simulations [72], makes modern descent-based algorithms
difficult to employ.

In this paper, we provide an algorithm that yields promising
results in the inverse design problem of generating structured and
entangled photon pairs in quantum optics using tailored non-
linear interactions in the SPDC process. The learned interaction
parameters can then be used to predict the generation of the desired
quantum state or correlations between structured photon pairs in
future experiments, as illustrated in Fig. 1. Our SPDCinv model is
derived from Heisenberg’s equations of motion for quantum fields,
is non-perturbative (can be used to simulate high-gain effects), and
can learn many important parameters of the quantum optical proc-
ess necessary for generating arbitrarily shaped correlated photon
pairs. We show how to make an inherent stochastic description of
SPDC fully differentiable, making it amenable to descent-based
methods of optimization. Furthermore, we use a split-step Fourier
(SSF) method [73] to solve our forward model. To the best of our
knowledge, this is the first time that a differentiable model has been
integrated with SSF—a feature also relevant for many other inverse
problems in optics and quantum mechanics (it combines diffrac-
tion, or more generally, propagation, in space, to solve nonlinear
partial differential equations, such as the nonlinear Schrödinger
equation). Our forward model has already been validated against a
number of published experimental results, detailed in [25,74,75],
for the cases of structured pump beams [57,59,76] and structured
crystals [25,74,75]. In this paper, we further validate it against
other experiments [57,20], obtaining very good agreement for
both on-axis spatial mode correlations, as well as to the quantum
state tomography (QST) of the generated state. Moreover, we
demonstrate the full process of inverse design to obtain the correct
relations between crystal length and pump waist, as achieved in the
experiments [57].

Fig. 1. Illustration of the inverse design problem. Given the desired
coincidence rate counts, G (2), and density matrix, ρ, the SPDCinv
algorithm solves the inverse design problem and extracts the optimal 3D
NLPC structure and the complex pump beam structure, for generat-
ing the desired quantum state of the spontaneously emitted structured
photon pairs.

We use our model to discover the optimal NLPC structures
(2D NLPCs [43,44,77–82] or 3D NLPCs [45–53]) and the pump
structures that generate desired nontrivial quantum correlations
(coincidence rate counts) and quantum states (bi-photon density
matrices). We demonstrate the generation of high-dimensional
maximally entangled photon pairs and show how the generated
quantum state and its correlations can be controlled entirely opti-
cally using shaped pump fields interacting with the initially learned
3D NLPC structure—a feature that can find applications in
qudit-based quantum key distribution and quantum information
protocols that work at high switching rates. Our SPDCinv model
has been made available at [83]. A preliminary short abstract of this
work was presented at the CLEO 2021 conference [84]. Our use
of the term “optimal” is indicative of local optimality, as is common
in literature using deep learning and related techniques. We note
in passing that there is an interesting vein of literature that aims to
show that in the overparameterized context, locally optimal solu-
tions are quite close to global optimality; see, for example [85,86],
and references therein.

2. ALGORITHM DESIGN

A. Methodology

The procedure for the study of inverse problems in physical systems
can be divided into the following three steps [7,87]: (i) identifying
a minimal set of model parameters whose values completely char-
acterize the system; (ii) identifying the physical laws and dynamics
governing the system; and (iii) the use of actual results to infer the
values of the model parameters. Given a desired observable set,Od ,
describing the quantum state or any related features, our goal is to
find the unknown physical parameters, 3, that characterize the
system:

3= I (Od ), (1)

where I (·) is our inverse solver. We physically constrain our
SPDCinv model by integrating it with the interaction dynamics of
the SPDC process. In this manner, the model captures the inter-
action properties, such as diffraction, space-dependent nonlinear
coupling, vacuum fluctuations, and non-perturbative effects. We
consider SPDC in a bulk nonlinear crystal of uniform refractive
index and spatially varying second-order nonlinearity, χ (2). The
dynamics is prescribed by the Heisenberg equations of motion:
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i~∂t Ê = [Ê , ĤSPDC], for the field operators Ê evolving under
the SPDC Hamiltonian ĤSPDC, where ~ is the reduced Planck’s
constant. To solve the dynamics, we transform the quantum
Heisenberg equations of motion to the frequency domain and
assume an undepleted continuous-wave pump field. We further
take the slowly varying envelope approximation for the field opera-
tors and assume that the generated photons are post-selected using
a narrow spectral filter, as extensively detailed in the Supplement 1,
Section B [88]. These assumptions lead to dynamics in terms of a
single longitudinal mode, i.e., for quasi-monochromatic photons,
while allowing an arbitrary transverse spatial envelope and diffrac-
tion of each photon. It is worth noting that our model could be
readily extended to include temporal walk-off and group-velocity
dispersion effects (see Supplement 1, Section B.2). Decoherence
due to linear absorption is also neglected, since absorption is typ-
ically small in the optical range [89,90]. Finally, we assume that
photorefraction does not play a role, which is true for periodically
poled KTP (PPKTP) and since the existing photorefraction of
periodically poled lithium niobate (PPLN) can be mitigated either
by Mg-doping, by working at high temperatures and/or at near-IR
wavelengths.

Our model takes advantage of the common theoretical sce-
nario in SPDC, where the initial state of the optical field is the
vacuum state |0〉 and the interaction Hamiltonian is quadratic
in the field operators. This enables us to expand the first- and
second-order correlation functions—and, in principle, arbitrary-
order correlations—of the resulting photonic state in terms of
only single-photon amplitudes. Namely, the matrix elements of
the correlation functions have the form 〈1|Ê |0〉 and 〈0|Ê |1〉 (see
Supplement 1, Section B.1). By projecting the Heisenberg equa-
tions of motion onto these matrix elements, we obtain two pairs
of c -number coupled wave equations along the 3D interaction
medium [25], given as
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where ζ = z is the coordinate along the direction of propagation.
In the above equation, E out

j , E vac
j ( j = i, s for the idler and signal

fields, respectively) are the “output” and “vacuum” field ampli-
tudes, corresponding to the aforementioned matrix elements as
E out

j = 〈1|Ê j |0〉 and E vac
j = 〈0|Ê j |1〉, where the single-photon

state |1〉 can be arbitrary; ∇2
⊥

is the transverse Laplacian oper-

ator; k j is the wavenumber; κ j (r, ζ )=
ω2

j
c 2k j

χ (2)(r, ζ )Ep(r) is

the nonlinear-coupling coefficient, where r= (x , y ) is a posi-
tion on the transverse plane; χ (2)(r, ζ ) stands for the (spatially
varying) second-order susceptibility, and Ep(r) is the (spatially
varying) pump field envelope; c is the speed of light in vacuum;
and 1k = k p − ks − ki is the phase mismatch. To solve the two
pairs of c -number coupled wave equations, Eq. (2), we need to

specify a boundary condition at z= 0. This in principle could
be done separately for each of the transverse photonic modes in
the system, which may become inefficient for a continuous set
of modes. In Supplement 1, Section B.4, we show that a choice
of Gaussian white noise, with a standard deviation matching the
vacuum field uncertainty, recovers the desired quantum corre-
lation observables when averaged over a large ensemble of noise
realizations—without the necessity to scan over all possible modes.
The quantum vacuum noise is therefore emulated by initializing
a large number of instances of such Gaussian noise in both the
idler and signal amplitudes, E vac

i and E vac
s , at z= 0. We summa-

rize Eq. (2) in a compact fashion by denoting all of the fields as
E = (E out

i , E vac
i , E out

s , E vac
s ), and writing

i
∂E
∂ζ
=L(3)E , (3)

where L is the operator given by the righthand side of Eq. (2),
and 3 represents the list of physical parameters described in the
previous exposition. In practice, we will be particularly interested
in the pump field Ep and second-order susceptibility χ (2), that
is, 3= (Ep(·), χ

(2)(·)), with all other parameters being taken
as fixed. However, we note that the formulation that follows is
general, and does not depend on the parameters of interest.

The model described herein is derived directly from the
Heisenberg equations of motion, solving the dynamics in terms of
the aforementioned single-photon matrix elements. These encap-
sulate the complete information of the quantum state in the case of
conventional SPDC, and the desired normally ordered observables
are directly obtained from them. On the other hand, phase-space
methods, first applied in [91,92], sample the quasiprobability
distribution, while solving a set of stochastic dynamical equations
for the field quadratures. Though these approaches share common
grounds with our model for solving SPDC, for example, in the use
of random boundary conditions in the Wigner function method
[19,21–24,93], their formulation is different. For example, the
Wigner method detailed in [20] results in symmetrically ordered
observables that then need to be recast onto normally ordered ones
to obtain the desired observables. Despite these differences, we
envision that the proposed optimization methodology for our
stochastic model could—with some modification—be generalized
to incorporate these phase-space methods for modeling quantum
optics.

We integrate the fields along the direction of propagation
according to Eq. (2), and solve the coupled wave equations for the
large ensemble of quantum vacuum realizations in parallel. We use
a time-unfolded version [94] of the SSF method [73,95] to solve
for the propagation along the crystal. Then, we derive the second-
order statistics to describe the resulting quantum state, an approach
that was validated against experimental results, for several cases
of shaped pump beams and structured crystals [20,25,57,74,75]
(see also Section 3.A). This strategy facilitates differentiation
back through the model and enables application of the latest opti-
mization methods for learning its physical parameters, thereby
overcoming issues related to the fundamentally stochastic nature of
the model.

In what follows, we shall refer to the solution of Eq. (2) [or
alternatively, Eq. (3)], together with the mapping onto a particular
set of observables of interest, denoted asO, as our forward model . In
particular, we write

O=F {E [P(3)]} , (4)

https://doi.org/10.6084/m9.figshare.19686252
https://doi.org/10.6084/m9.figshare.19686252
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Fig. 2. Description of the SPDCinv algorithm in two phases. (1) In the training phase (upper panel), the parameterized version of the inverse design is
solved. The model receives as input the desired observables and emits the parameterization of the physical parameters that will produce it, by solving the
optimization problem. The learning process is described by applying gradient descent (in orange) to the appropriate discrepancy measure,D(·, ·). (2) In the
inference phase (lower panel), the model receives the computed physical parameters and emits the observables. The compact notation of the partial differen-
tial equation refers to the solution of the Heisenberg equations, Eq. (2). The quantum vacuum noise is integrated externally (dashed line).

where

• P(3) denotes the solution of Eq. (2) for the set of parameters
3 and a particular realization of vacuum noise, followed by projec-
tion of the output and noise fields onto a desired orthonormal basis;

• E denotes the expectation over vacuum noise, in prac-
tice achieved by computing the average over a large number of
independent realizations of vacuum noise;

• operator F computes the first-order correlations that yield
the desired observable (coincidence rate count, G (2), and density
matrix of the bi-photon quantum state, ρ), as explained in greater
detail in Section 2.B.

Given a desired observable set, Od , the general inverse problem
involves finding the physical parameters 3 that produce it. We
take a parameterized approach to solving the inverse problem.
In particular, suppose that the physical parameters of interest 3
depend upon parameters θ that specify them, i.e.,3=3(θ). Such
parameters θ may, for example, be coefficients of basis expansions;
we will see concrete examples shortly. In this case, we solve the
inverse problem by solving the optimization problem

θ∗ =min
θ

D(F{E[P(3(θ))]},Od ). (5)

In the above, D(·, ·) is a discrepancy measure between two
sets of observables. For example, we may take D(O,O′)=
‖O−O′‖β , where ‖·‖β is the Euclidean β-norm; alternatively, if
the observables are normalized to unit 1-norm, then D can be the
Kullback–Leibler divergence. In the case where we are measuring
the discrepancy between two density matrices, we may take D to
be the trace distance [96]. In Eq. (5), we are therefore trying to
minimize the discrepancy between the set of observables given
by a particular parameter specification θ , and the desired set of
observablesOd . The inverse model is then given by

I (Od )=3(θ
∗). (6)

To solve the optimization problem in Eq. (5), an approach
based on gradient descent may be employed. The key is that
the forward model of Eq. (2), while quite complicated, can be
expressed in such a way that it is fully differentiable. As a result,
any library that can auto-differentiate a system may be used to
compute the relevant gradients, thereby allowing for the solution
to the optimization problem in Eq. (5). In practice, we use JAX
[97], a Python library designed for high-performance numerical
computing and automatic differentiation.

Finally, given the solution to the inverse problem, we may run
the forward model to compute the observables that actually result
from the interaction parameters we have computed, that is,

Oi =F
{
E
[
P(3(θ∗))

]}
, (7)

where subscript i indicates inference. The degree to which the
inferred observables Oi match the desired observables Od will
indicate the quality of the inverse algorithm. The overall algorithm
is summarized in Fig. 2.

Interaction Parameters. We may learn any physical parameters
3 of the interaction, e.g., wavelength, temperature profile, poling
period, poling profile, etc. In this work, the 2D/3D NLPC struc-
ture, χ (2)(r, ζ ), and pump beam profile, Ep(r), are the unknown
physical parameters we seek to learn, that is,3= (Ep(·), χ

(2)(·)).
We parameterize the 2D/3D NLPC structure and pump beam
profile by multi-dimensional parameters θE and θχ , respectively,
such that 3(θ)= (Ep(·; θE), χ

(2)(·; θχ )). We now discuss in
more detail how this parameterization is performed.

The parameters we learn can be as general as we want, subject
to technological and physical restrictions. To decrease the dimen-
sionality of learned parameters to ensure smoother convergence
of the inverse problem’s solution, the continuous functions of the
NLPC structures are represented using a finite set of unknowns.
One way to do this is through expansion in set basis functions that
are mutually orthogonal, which may also change as a function
of the propagation coordinate, ζ ; the parameters θ then include
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the coefficients of the expansion. Examples include the Hermite–
Gauss (HG) and Laguerre–Gauss (LG) bases, though many other
possibilities exist. These basis functions are often scaled according
to a transverse length, which for light beams is usually referred to
as the waist size, a term we adopt hereafter for all basis functions.
Learning the waist sizes of each of the basis functions individually
adds further degrees of freedom to our model. The exact role of the
parameters can be seen by formally writing the NLPC structure
and the pump profile as a linear combination of the basis functions:

χ (2)(r, ζ ; θχ )=
Nχ∑

n=1

αn
χ8

n
χ (r, ζ ;w

n
χ ), θχ =

{(
αn
χ , w

n
χ

)}Nχ
n=1

,

Ep(r; θE)=
NE∑
n=1

αn
E8

n
E(r;w

n
E), θE =

{(
αn
E , w

n
E
)}NE

n=1 ,

(8)

where αn
χ , α

n
E are the learned basis coefficients; wn

χ , w
n
E are the

learned basis function waist sizes; and 8n
χ , 8

n
E are the basis func-

tions. Here, the basis function index n sums over both transverse
modal numbers, for example, the orbital angular momentum
(OAM) l - and radial p-indices for LG modes.

B. Observables

The set of desired observables describing the generated quantum
state is given by the coincidence rate count, G (2), and density
matrix of the bi-photon quantum state, ρ, such that in general,
Od = (G

(2)
d , ρd ). Their evaluation is achieved by first solving

Eq. (2) over a large number of independent realizations of vac-
uum noise, projecting the output and noise fields onto a desired
orthonormal basis of optical modes, and then taking the ensem-
ble average to obtain first-order correlations [20,25] (see also
Supplement 1, Section B), which (for the signal) is given by
G (1)(qs , q ′s )= 〈ψ |a

†
qs

aq ′s |ψ〉. Here, |ψ〉 denotes the quantum
state, a (a †) denotes the photon annihilation (creation) operator,
and qs denotes any quantum number of the signal photon, for
example, LG modes, HG modes, etc. Second-order correlations
are derived using the fact that the quantum state of SPDC, the
squeezed vacuum state [98], belongs to the family of Gaussian
states, for which all higher-order correlations can be obtained
from the first-order ones [99] (Supplement 1, Section B.6). The
coincidence rate is given by the second-order quantum correlation
function, which determines the probability of finding an idler
photon in mode qi and a signal photon in mode qs :

G (2)(qi , qs , qs , qi )= 〈ψ |a †
qi

a †
qs

aqs aqi |ψ〉. (9)

To extract the optimal model parameters that generate the
desired quantum correlations over a given basis, we solve the opti-
mization problem in Eq. (5). Here, D(·, ·) is taken as a typical
measure of discrepancy between two probability distributions. For
example, we may use the Kullback–Leibler divergence [100], the
L1 norm [101], or an ensemble of both.

To obtain the full quantum state generated by the SPDC
process, we use QST [102–104]. Equation (9) allows for the calcu-
lation of any coincidence measurement performed on the system,
on any basis of our choice. Since the process of QST involves a
sequence of projective coincidence measurements on different
bases, we can readily reconstruct the density matrix, ρ, of the

entangled two-qudit state through a series of linear operations.
Here, naturally,D(·, ·) [in Eq. (5)] is taken to be the trace distance
[96]—a metric on the space of density matrices that measures the
distinguishability between two states.

The tomographic reconstruction is performed using the cor-
relation data collected from the projections of the simulated
bi-photon state onto orthogonal as well as mutually unbiased bases
(MUBs) [103,104]. The density matrix of the bi-photon system
can be written as

ρ =
1

d2

d2
−1∑

m,n=0

ρmnσm ⊗ σn, (10)

where σm is the set of generators that span the d -dimensional
tomography space (for example, Pauli and Gell-Mann matrices
for d = 2 and 3, respectively). The expansion coefficients ρmn are
found via

ρmn =

d−1∑
i, j=0

a i
ma j

n 〈λ
i
mλ

j
n|ρ|λ

i
mλ

j
n〉, (11)

with a i
m and |λi

m〉 denoting the i th eigenvalue and eigenstate of
σm , respectively [104]. The required projections inside the sum
function are found in a manner similar to Eq. (9), with the pure
basis states replaced by the MUBs, when necessary.

3. RESULTS

The proposed method can be readily employed to generate desired
quantum correlations between SPDC structured photon pairs.
Further, by emulating QST integrated into the learning stage, we
can tailor specific, high-dimensional quantum states desirable
for photonic quantum information and communication. In this
section, we use our algorithm to solve the inverse design problem
and extract the optimal 2D or 3D NLPC structure and the com-
plex pump beam structures for generating desired second-order
quantum correlations or density matrices. We let our algorithm
learn the NLPC structures, the complex pump beam profiles, or
both. We discover that the quantum state of SPDC photons and
their correlations can be all-optically controlled by first learning the
crystal structure with a given pump mode, and then changing the
initial pump mode in inference phase. This active optical control
has the advantage of altering the quantum state in a non-trivial
manner, while retaining its purity. Further, we find that learning
the crystal structure and the pump beam profile simultaneously
can improve the accuracy of the generated results, in comparison
with the desired state. The SPDCinv training phase takes about 1 h
on four NVIDIA T4 16 gb GPUs, for all configurations involving
1 mm long NLPCs.

A. Model Validation

Before we delve into inverse design problems, we first validate our
model against published experimental results of SPDC shaping
[57,59]. This comes in addition to the multiple, already pre-
sented, validations of our model [25]. Figure 3 presents the use
of our model for recovering the experimental results reported by
Kovlakov et al . [59]. We reproduce the coincidence rate counts for
a qutrit state, Fig. 3(a), and ququint state, Fig. 3(b), in the LG basis,
generated by a shaped pump field. We restrict the shaped pump
field to the same modes reported in [59]. To show the capability of

https://doi.org/10.6084/m9.figshare.19686252
https://doi.org/10.6084/m9.figshare.19686252
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Fig. 3. Model validation against experimental results reported by Kovlakov et al . [59]. (a) LG qutrit state: SPDCinv model generated coincidence rate
counts (i), and the corresponding pump intensity (ii) and phase (iii). (b) LG ququint state: SPDCinv model generated coincidence rate counts (i), and the
corresponding pump intensity (ii) and phase (iii). (c) LG qutrit density matrix: experimental result [59] (i) and SPDCinv model generated result (ii).

our model to simulate the QST procedure, we recover the density
matrix of the qutrit state, Fig. 3(c), as reported by Kovlakov et al .
[59]. The resulting quantum states, coincidence rate counts, and
pump fields (used to recover the result in inference) are in good
agreement with experiments (deviations may arise from detection,
OAM projection, and coupling imperfections, as acknowledged
by Kovlakov et al . [59]). To demonstrate the model agreement,
we calculate the mean squared error (MSE) values of the learned
coincidence rate counts, the corresponding pump field coeffi-
cient amplitudes, and the density matrix against experimental
results. For qutrit coincidence rate counts, we obtain MSE of
4.11× 10−5 [Fig. 3(a)(i)], and for ququint coincidence rate
counts, we obtain MSE of 8.76× 10−5 [Fig. 3(b)(i)]. For the
matching pump field coefficient amplitudes, we obtain MSEs of
1.59× 10−2 and 1.92× 10−2, respectively. For the qutrit density
matrix, the MSE is 4.60× 10−3 [Fig. 3(c)]. We provide addi-
tional comparisons in tabular form in Supplement 1, Section A.4,
Tables 1–4. Next, we follow another result reported by Kovlakov
et al . [57] and let our algorithm learn the optimal pump waist size

for generating a pure HG spatial Bell state between structured
SPDC photon pairs. Figure 4 shows the convergence of our learn-
ing algorithm towards the optimal pump waist, wp =

√
L/k p

[57], for the case of L = 5 mm. As the learning process pro-
gresses, the discrepancy measure, D(·, ·) Eq. (5), reduces until
the model reaches convergence. Accordingly, the size of the pump
waist converges to the required value [57], and a clear Bell state,
(|0, 1〉 + exp(iφ)|1, 0〉)/

√
2, is generated.

B. Shaping Arbitrary Quantum Correlations

First, we let our algorithm learn the physical parameters for desired
quantum correlations—that is, the two-photon coincidence rate
counts—between structured SPDC photon pairs. The learned
parameters are the spatial modes of the NLPC structure and pump
structure, according to Eq. (8). We use a type-2 SPDC process in
a 1 mm long KTP NLPC, quasi-phase-matched to on-axis gener-
ation of photon pairs at 810 nm from a 405 nm pump wave. We

https://doi.org/10.6084/m9.figshare.19686252
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Fig. 4. Model validation against experimental results reported by Kovlakov et al . [57] for shaped correlations corresponding to the Bell state (|0, 1〉 +
exp(iφ)|1, 0〉)/

√
2. The upper-right figure is the discrepancy measure [Eq. (5)] between the generated coincidence rate counts and the desired one [57] ver-

sus training epoch number. The only learned physical parameter is the pump waist, and we let our algorithm find its optimal value for generating the desired
quantum correlations. We sample the obtained pump waist along the discrepancy curve (red dots and insets) to see the evolution of the generated coinci-
dence count rates under the optimized pump waist. At convergence, the algorithm obtains the correct pump waist value of wp =

√
L/k p ≈ 13.8 µm for

L = 5 mm for generating a pure HG Bell state.

assume that the pump beam is linearly polarized along the y direc-
tion and that the χ (2) nonlinear coefficient can attain one of two
binary values of+d24 and−d24. We project the generated photons
on either LG modes with integer quantum numbers l , p , standing
for the azimuthal and radial numbers, respectively, or HG modes,
with integer quantum numbers n,m, standing for x - an y -axis
mode numbers, respectively. When considering the coincidence
rate counts, we post-select either the radial index (p = 0), in the
case of the LG basis, or the y -axis modal number (m = 0), in the
case of the HG basis. The discrepancy measure in Eq. (5) is taken as
a weighted ensemble of the Kullback-Leibler divergence and the L1
norm.

Laguerre–Gauss Basis. Here, we show all-optically coher-
ent control over quantum correlations of SPDC photons, in the
LG basis (Fig. 5 depicts the results of this section). We use our
algorithm to extract the optimal 3D NLPC structures for gener-
ating the desired coincidence rate counts of maximally entangled
two-photon qubit |ψ〉 = (|1,−1〉 + exp(iφ)| − 1, 1〉)/

√
2 and

ququart |ψ〉 = (| − 2, 1〉 + exp(iφ1)|0,−1〉 + exp(iφ2)| − 1, 0〉
+ exp(iφ3)|1,−2〉)/

√
4 states, which can later be actively con-

trolled via the pump beam (the indices of the signal and idler
photons are the azimuthal indices). We start by letting the algo-
rithm learn the optimal 3D NLPC structure with a constant
Gaussian pump beam, presented in Figs. 5(a)(iv), 5(a)(v) and
5(b)(iv), 5(b)(v). The obtained 3D NLPC [Figs. 5(a)–5(b)(v)]
display an intricate structure: concentric rings, Fig. 5(a)(v), which
mark the coupling to radial LG modes (p > 0), and corkscrew
structures, Fig. 5(b)(v), indicating an intrinsic chirality of the 3D
NLPC structure. We find that the coupling to radial modes is
essential for quantum destructive and constructive interference in

the post-selected subspace (p = 0), while the crystal-handedness is
responsible for inducing OAM. The generated quantum correla-
tions coincide remarkably well with the target, Figs. 5(a)(i), 5(a)(ii)
and 5(b)(i), 5(b)(ii), with MSE of 6.24× 10−5 for qubit state and
5.02× 10−5 for ququart state (a tabular comparison is provided in
Supplement 1, Section A.4, Tables 5 and 6).

The learned crystal structures demonstrate an even richer
functionality—they can span a larger variety of output correlations
when the input pump mode is altered from Gaussian (l = 0) to
other LG modes, as depicted in Figs. 5(a)–5(b)(vi). As we alter the
initial pump mode, the new correlations differ significantly from
those obtained in the original design, while they still correspond
to maximally entangled states. Moreover, the new correlations
keep the high signal to noise ratio (SNR) between the primary
two-photon modes and the background of the coincidence signal,
as can be seen in Figs. 5(a)–5(b)(iii). For example, by introducing
an external pump OAM, a qubit state originally on the li + ls = 0
diagonal is shifted to a qubit on the li + ls = 1 diagonal, Fig. 5(a),
when l p = 1. Similarly, a ququart on the li + ls =−1 diago-
nal is shifted to the li + ls = 1 diagonal when l p = 2, Fig. 5(b).
Interestingly, by using other learned crystal structures and
superpositions of LG modes in the pump beam, we discover
nontrivial pump-induced transformations, between a qutrit and a
ququart, and a ququart and a qubit (see Supplement 1, Section A.1,
Fig. A.1).

Hermite–Gauss Basis. In the previous example, in the LG
basis, the learning step was performed by varying only the crystal
parameter. Now, we show that by learning the crystal structure
and the pump beam profile simultaneously, we can improve the
quality of the generated second-order quantum correlations.

https://doi.org/10.6084/m9.figshare.19686252
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Fig. 5. Inverse design and all-optical coherent control over quantum correlations of SPDC photons: maximally entangled two-photon states in the LG
basis. (a) Shaped correlations corresponding to the qubit state |ψ〉 = (|1,−1〉 + exp(iφ)| − 1, 1〉)/

√
2. (i) Target coincidence probability; (ii) learned

coincidence probability, for an initial Gaussian pump (iv) and the learned 3D NLPC structure (v). In (v), three successive unit cells are shown (the z axis
is scaled-up by a factor of 20). All-optical control over the coincidence probability is demonstrated using a LG01 pump mode (vi), with the same learned
crystal, giving quantum correlations that correspond to a new qubit state, |ψ〉 = (|0, 1〉 + exp(iφ)|1, 0〉)/

√
2 (iii). (b) Shaped correlations corresponding

to the ququart state |ψ〉 = (| − 2, 1〉 + exp(iφ1)|0,−1〉 + exp(iφ2)| − 1, 0〉 + exp(iφ3)|1,−2〉)/
√

4. (i)–(v) As in (a). All-optical control over the
coincidence probability is demonstrated using a LG02 pump mode (vi), with the same learned crystal, giving quantum correlations that correspond to a
different ququart state, residing on the li + l s =+1 diagonal, |ψ〉 = (|2,−1〉 + exp(iφ1)|0, 1〉 + exp(iφ2)|1, 0〉 + exp(iφ3)| − 1, 2〉)/

√
4 (iii).

In this section, we explore the photon correlations in the HG basis
and our target is a two-photon ququart state: |ψ〉 = (|0, 1〉 +
exp(iφ1)|1, 0〉 + exp(iφ2)|1, 2〉 + exp(iφ3)|2, 1〉)/

√
4 (the

indices of the signal and idler photons are the HG modes indices
in the y direction). We consider designs that use more mature
NLPC technologies, such as electric field poling [105], which are
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Fig. 6. Inverse design of quantum correlations of SPDC photons: maximally entangled two-photon states in the HG basis. Shaped correlations corre-
sponding to the ququart state |ψ〉 = (|0, 1〉 + exp(iφ1)|1, 0〉 + exp(iφ2)|1, 2〉 + exp(iφ3)|2, 1〉)/

√
4. (i) (ii) Respectively, target and learned coincidence

rate counts. (iii), (iv) Simultaneously learned 2D NLPC structure and complex pump beam profile, restricted to vary only in the x direction. In (iii), three
successive unit cells are shown (the z axis is scaled-up by a factor of 20).

restricted to 2D nonlinear crystal structures. We use our algorithm
to simultaneously extract the optimal 2D NLPC structure that
varies only in the y direction and the pump beam profile that is
restricted to varying only in the x direction, for generating the
desired coincidence rate counts of a maximally entangled two-
photon ququart. In Fig. 6(ii), we see the generated coincidence
rate counts that result from the computed interaction parameters.
While the probabilities of the generated ququart state are lower
than the desired target, they are equal to and significantly larger
than other unwanted probabilities. This result is certainly exciting
when taking into account the restrictions we considered under 2D
variation. The obtained crystal structure [Fig. 6(iii)] and the pump
profile [Fig. 6(iv)] display a Cartesian structure.

To better show the importance of combining both the crystal
structure and the pump beam profile to obtain the desired maxi-
mally entangled state, we compared the quality of the generated
second-order quantum correlations of a ququart state under the
following three scenarios: using our algorithm to solve the inverse
design problem and (1) extracting the optimal 3D NLPC structure
with a constant Gaussian pump; (2) extracting the complex pump
beam profile, with a constant periodically poled crystal; and (3)
extracting both the optimal 3D NLPC structure and the optimal
complex pump beam profile. The simultaneous learning of the
pump and crystal clearly outperforms the individual learning of
either. This is attributed to higher modes created by the multipli-
cation of modes composing the pump and crystal structure in the
nonlinear coupling coefficient, κ j [in Eq. (2)]. Also, there seemed
to be no preference in the generated results while optimizing sepa-
rately either the NLPC or the pump, which shows the similar role
of each of them in the nonlinear coupling coefficient. For visual
results, see Supplement 1, Section A.2, Fig. A.2.

C. Shaping Arbitrary Quantum States

To resolve a specific two-photon quantum state generated by the
tailored SPDC process, a coincidence measurement will not suf-
fice. For this purpose, we emulate QST and integrate it into our
learning stage for evaluating the corresponding density matrix, as
detailed in Section 2.2. The density matrix is used as an observable,
while the trace distance is taken as the discrepancy metric D(·, ·)
[Eq. (5)]. As a proof of concept, we consider two-photon qudit
states with dimension d = 3 in the LG basis. That is, we focus on
the subspace spanned by {| − 1〉, |0〉, |1〉} ⊗ {| − 1〉, |0〉, |1〉},
giving a 9× 9 dimensional density matrix.

Similar to the previous subsection, we use our algorithm
to simultaneously extract the optimal 3D NLPC struc-
tures and the pump beam profiles, for generating the desired
quantum states. Figure 7(a) depicts the results for the max-
imally entangled state |ψ〉 = (|1,−1〉 + | − 1, 1〉)/

√
2

[corresponding to the coincidence rate shown in Fig. 5(a)(i)],
while Fig. 7(b) depicts the results for the maximally entangled
state |ψ〉 = (|1,−1〉 + |0, 0〉 + | − 1, 1〉)/

√
3 (corresponding

to the coincidence rate shown in Supplement 1, Fig. A.1(a)(i)).
The generated density matrices fit the target states well, as evi-
dent in Figs. 7(a)(i), 7(a)(iii) and 7(b)(i), 7(b)(iii), with MSE of
4.51× 10−4 for qubit state and 1.87× 10−4 for qutrit state (a
tabular comparison is provided in Supplement 1, Section A.4,
Tables 7 and 8). Our learned pump profiles and crystal structures
demonstrate concentric shapes, Figs. 7(a)(ii), 7(a)(iv) and 7(b)(ii),
7(b)(iv). These maintain a total OAM of li + ls = 0, as expected,
while making higher-order radial LG modes possible. These
higher-order modes are responsible, for example, for removing
the two-photon Gaussian mode |00〉 in the first learned state,
Figs. 7(a)(i) and 5(a)(ii), through destructive interference, which is
otherwise impossible when using only Gaussian pump beams.

Importantly, the generated quantum two-photon states are
sensitive to the relative phase between the modes constructing

https://doi.org/10.6084/m9.figshare.19686252
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Fig. 7. Inverse design of quantum state density matrices of SPDC photons: maximally entangled two-photon states in the LG basis. (a) Qubit state
|ψ〉 = (|1,−1〉 + | − 1, 1〉)/

√
2. (i), (iii) Respectively, target and learned states (the real part of the density matrix is shown in large, and the imaginary

in small). (ii), (iv) Simultaneously learned complex pump beam profile and 3D NLPC structure. In (iv), three successive unit cells are shown (the z axis is
scaled-up by a factor of 20). (b) Qutrit state |ψ〉 = (|1,−1〉 + |0, 0〉 + | − 1, 1〉)/

√
3. (i)–(iv) As in (a).

the pump profile and the learned nonlinear crystal structure. This
feature is essential for asserting that the active all-optical control
over the coincidence rate counts, discussed in the previous sec-
tion, allows also for quantum coherent control over the generated
photon qudits. To demonstrate this, we again learn a 3D crystal
structure with a fixed pump profile, but this time consisting of a
given superposition of LG modes. By changing the relative phase
between the LG modes, we expect that the off-diagonal terms in
the density matrix change accordingly.

Figure 8 depicts the results for the generated maximally entan-
gled two-photon ququart state |ψ〉 = (| − 1, 0〉 + |0,−1〉 +
|1, 0〉 + |0, 1〉)/

√
4. Initially, we use our algorithm to extract the

optimal 3D NLPC structure with a fixed pump beam of the form
LG01 + e iαLG0−1 for α= 0◦ [i.e., a HG10 mode, as presented
in Fig. 8(a)(iii)]. The real part of the generated density matrix is
shown in Figs. 8(a)(i) and the imaginary part in Fig. 8(a)(ii). The
generated density matrix fits the desired one. We then used the

extracted crystal structure with different superpositions of LG
modes of the pump. Figures 8(b)(i), 8(b)(ii) and 8(c)(i), 8(cii)
show the quantum states achieved through inference with the
same learned crystal structure, but with the pump mode super-
position phase angle α changed to α= 120◦, Fig. 8(b)(iii), and
240◦, Fig. 8(c)(iii). This corresponds experimentally to a rotation
of the HG10 mode. Note the significant change in the imaginary
off-diagonal density matrix elements in Figs. 8(b)(ii) and 8(c)(ii).
This indicates the coherent control over the quantum state via
the rotation of the pump beam—a diverse functionality available
by use of a single crystal structure pumped with different optical
modes.

4. CONCLUSION

We have introduced an algorithm that yields promising results in
the inverse design problem of generating structured and entangled
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Fig. 8. Inverse design and all-optical coherent control over quantum state of SPDC photons: maximally entangled two-photon ququart state in the LG
basis. We use our algorithm to extract the 3D NLPC structure that generates the desired ququart state |ψ〉 = (| − 1, 0〉 + |0,−1〉 + |1, 0〉 + |0, 1〉)/

√
4,

using the initial constant pump profile HG10 = LG01 + LG0−1 (a)(iii). The real part of generated density matrix is shown in (a)(i) and the imaginary part in
(a)(ii). Next, the pump beam illuminating the learned crystal structure is rotated to actively control the generated quantum state. (b)(i), (ii) Real and imagi-
nary parts, respectively, of generated density matrix for the rotated incident beam LG01 + e i120◦LG0−1 (b)(iii). (c)(i), (ii) Real and imaginary parts, respec-
tively, of generated density matrix for the rotated incident beam LG01 + e i240◦LG0−1 (c)(iii).

photon pairs in quantum optics, using tailored nonlinear inter-
actions in the SPDC process. The SPDCinv algorithm extracts the
optimal physical parameters that yield a desired quantum state or
correlations between structured photon pairs that can then be used
in future experiments. To ensure convergence to realizable results
and to improve the predictive accuracy, our algorithm obeyed
physical constraints through the integration of the time-unfolded
propagation dynamics governing the interaction of the SPDC
Hamiltonian. We have shown how we can apply our algorithm to
obtain the optimal nonlinear χ (2) structures (2D/3D) as well as
different pump structures for generating the desired maximally
entangled states. The optimal NLPC structures extracted by our
model seem to exhibit robustness against imperfections. To mimic
crystal fabrication imperfections, we deliberately add errors to the
crystal structure to impair the generated coincidence rate counts
of the maximally entangled two-photon qubit. Then, we show
how with a slight variation in a different parameter of the system
(pump waist), we can divert the system back, to nearly recover the
original system results (see Supplement 1, Section A.3). The high
dimensionality of these generated states increases the bandwidth of
quantum information, and can improve the security of quantum
key distribution protocols [106,107]. We further demonstrate
all-optical coherent control over the generated quantum states by
actively changing the profile of the pump beam, making our results
appealing for a variety of quantum information applications that
require fast switching rates.

This work can readily be extended to the spectral–temporal
domain, by allowing non-periodic crystal structures along the

propagation axis—making it possible to shape the joint spectral
amplitude [108] of the photon pairs. Furthermore, one can adopt
our approach for other optical systems, such as nonlinear wave-
guides and resonators [109], χ (3) effects (e.g., spontaneous four
wave mixing [110]), spatial solitons [111,112], fiber optics com-
munication systems [113,114], and even higher-order coincidence
probabilities by increasing the pump intensity [115]. Moreover,
the algorithm can be upgraded to include passive optical elements
such as beam splitters, holograms, and mode sorters [8], thereby
providing greater flexibility for generating and manipulating
quantum optical states.

Looking to the future, several research directions may be
considered. For instance, one may incorporate various decoher-
ence mechanisms that result from losses such as absorption and
scattering. Alternatively, our current scheme may be adapted
to other quantum systems sharing a similar Hamiltonian struc-
ture, such as superfluids and superconductors [116]. In light of
all this, we believe that this work, along with its complementary
code (see Code 1, Ref. [83]), can contribute to further exciting
advancements and discoveries in other quantum and classical
systems.
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