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Computing Speed-of-Sound From Ultrasound:
User-Agnostic Recovery and a New Benchmark

Micha Feigin ““, Daniel Freedman

Abstract—Objective: Medical ultrasound is one of the
most accessible imaging modalities, but is a challenging
modality for quantitative parameters comparison across
vendors and sonographers. B-Mode imaging, with limited
exceptions, provides a map of tissue boundaries; crucially,
it does not provide diagnostically relevant physical quanti-
ties of the interior of organ domains.This can be remedied:
the raw ultrasound signal carries significantly more infor-
mation than is present in the B-Mode image. Specifically,
the ability to recover speed-of-sound and attenuation maps
from the raw ultrasound signal transforms the modality into
a tissue-property modality. Deep learning was shown to be
a viable tool for recovering speed-of-sound maps. A major
hold-back towards deployment is the domain transfer prob-
lem, i.e., generalizing from simulations to real data. This is
due in part to dependence on the (hard-to-calibrate) system
response. Methods: We explore a remedy to the problem of
operator-dependent effects on the system response by in-
troducing a novel approach utilizing the phase information
of the IQ demodulated signal. Results: We show that the
IQ-phase information effectively decouples the operator-
dependent system response from the data, significantly
improving the stability of speed-of-sound recovery. We also
introduce an improvement to the network topology pro-
viding faster and improved results to the state-of-the-art.
We present the first publicly available benchmark for this
problem: a simulated dataset for raw ultrasound plane wave
processing. Conclusion: The consideration of the phase of
the IQ-signals presents a promising appeal to traversing the
transfer learning problem, advancing the goal of real-time
speed-of-sound imaging.

Index Terms—Deep learning, inverse problems, speed-
of-sound inversion, ultrasound.

[. INTRODUCTION

EDICAL ultrasound imaging is one of the most
M widespread and accessible modalities due to its low
cost and the availability of portable hardware. It does not use
ionizing radiation, as is the case with X-ray imaging, nor does it
use strong magnetic fields, requiring special precautions and
shielding, as is the case with MRI imaging. It is also one
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Fig. 1. Sheep kidney in gelatin phantom: benefits of speed-of-
sound and attenuation information. The background speed-of-sound is
1500 m/s and the speed-of-sound in the Kidney is 1560 m/s. Other than
the bundary, the kidney cannot be differentiated from the background in
the B-Mode image (a) Shows the annotated B-Mode image, top edge of
the kidney is visible 1.5 cm from the top (b) show the Speed-of-sound
map (m/s) using phased based inversion (c) speed-of-sound map using
raw data inversion, and (d) the attenuation map (alpha coefficient). (a)
B-Mode image. (b) Phase based SoS recovery. (c) Raw signal based
SoS recovery. (d) Raw signal based attenuation map.

of the hardest modalities with which to compare quantitative
parameters across vendors or sonographers. The most common
ultrasound modality is the B-Mode (brightness mode) image
(see Figs. 1 and 2). The B-Mode image is constructed by trans-
mitting an acoustic pulse and plotting the log amplitude (decibel
domain) of the reflected signal, where the imaging plane is a 2D
slice extending away from the probe into the body.

The information in the B-Mode ultrasound image consists of
a combination of speckle density (echogenicity) and disconti-
nuities in the domain [1]. The construction of the ultrasound
image assumes a (constant) known speed of sound. An image
is distorted due to variability in the speed of sound. Discontinu-
ities between organs and bone surfaces are relatively specular.
As such, these may not appear in the image (Fig 8) or produce
artifacts and ghost reflections due to interreflections and refrac-
tions (Fig. 1(a)).
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Our goal is an ultrasound-based image reconstruction capable
of imaging the spatially varying, diagnostically relevant, tissue
properties throughout the domain, in real-time. Natural candi-
dates are elastic coefficients [2] such as Young’s modulus and
the shear modulus. These are measures of resistance to defor-
mation and, under the soft tissue regime (nearly incompressible
elastic model), are closely correlated; where Young’s modulus
is roughly equal to three times the shear modulus. Viscoelastic
properties [3] and scattering manifest as signal attenuation.

Ultrasound shear wave elastography (SWE) [4], [5] has been
used to approximately measure the shear and Young’s modulus.
This is done by generating (mechanical) shear waves in the tis-
sue and subsequently tracking their propagation using acoustic
(pressure) waves. This approach does suffer from several serious
drawbacks. SWE is highly sensitive to sonographer and subject
motion, subject to low frame rates, has high power requirements,
and requires more costly hardware.

To address these limitations, we focus instead on the local
pressure wave (acoustic) speed of sound. While the shear wave
speed depends only on the shear modulus (and density), the
pressure wave speed depends on both the bulk and the shear
modulus (and the density) [2]. As the bulk modulus also carries
diagnostic merit [6], this can be thought of as both an alternative
and a complementary method to SWE. Our approach enables
significantly higher frame rates, potentially in the hundreds of
frames per second, as opposed to the single-digit frame rates
of SWE. On the downside, traditional methods for recovering
speed-of-sound require large imaging apertures (large probes
or tomographic setups), a considerable computational load, and
often person-in-the-loop processing.

A deep learning-based approach combined with simulated
data has been proposed to address this problem [7]. The authors
have shown that given appropriate training data, a deep learning
approach can provide a high frame rate approximator to the
speed of sound inversion problem. As we show in our experimen-
tal results, similarly to the classical approaches, this is sensitive
to good calibration for the system response, both the pulse shape
and pulse amplitude. This is the domain transfer problem [8],
i.e., the ability to generalize results from simulation-based train-
ing to deployment to real-world data. This implies that parts of
the information pertaining to speed of sound lies in the way the
pulse deforms during propagation.

In this paper, we propose a novel method to tackle the problem
of sonographer and imaging-procedure independent learning,
greatly simlifying the system calibration problem. We focus on
operator-dependent parameters that cannot be calibrated for,
mainly amplification and gain. Amplification (global ampli-
tude multiplier) and attenuation (time-dependent multiplier) are
highly dependent on the force applied by the sonographer, the
angle of incidence, and the amount of acoustic gel used. Signal
loss due to attenuation is also spatially dependent, and spatial
scattering is difficult to correctly model with a 2D simulation.
We present initial results for addressing variability in pulse shape
through preprocessing by match filtering and Wiener filtering.
We provide initial stability tests on real data; however, due to
the current lack of calibrated real data, training and testing with
real data are left for future work.

Four major aspects are involved in the system response 1) the

efficiency, transmit power, and impedance matching (scalar mul-
tiplier) resulting in fixed amplitude scaling, and 4) attenuation,
scattering, and time-dependent gain, producing time variable
scaling. While unknown attenuation and gain factors can be
somewhat trained for in simulations (Table II), the results do not
translate well to real data (Fig 8). We propose to use the in-phase
and quadrature (IQ) demodulated signal [9]. To decouple gain
and attenuation, rather than using the complex IQ demodulated
signal, we use only the phase, or argument, of this complex 1Q
signal. We show that this approach transfers significantly better
to real data, providing both better and more stable results. to
show the decoupling of attenuation information from the signal,
we test the ability to train the network to recover attenuation
information from both the raw and IQ-phase signals, showing
that this endeavor fails on the 1Q-phase signal. Deep learning
paves the way for such new approaches that do not fit well in
the classical inversion model that depends on amplitude-phase
fitting.

An interesting outcome of our experiments is that the net-
work is highly dependent on both the center frequency and the
bandwidth of the pulse. This is to the point that the network fails
to train on a mixed-bandwidth data set even when the center
frequency is kept fixed. This implies that critical information
is obtained from the pulse shape. Applying a Wiener filter [10]
to translate pulse shapes does allow the application of a given
network signal produced by a system using a different pulse
shape. This paves the path for further signal pre-processing and
self-calibration based on spectral content, probe modeling, and
matched filtering, but is beyond the scope of this work and is left
for future research. Our speculation from the results is that while
the reflection amplitude itself provides unstable information, the
sign of the reflection (positive or negative reflected wave) and
consistency of the pulse shape provide additional information
on the sign and magnitude of the discontinuity in the speed of
sound at the boundary.

We also further optimize the network topology presented
in [7], [11] (Fig. 3). Our network maintains the U-net topology
with an input geometry of 64 channels by 2048 time samples, and
an output speed-of-sound map with a resolution of 128 by 256. In
contrast to previous works, each network layer consists of three
levels of three-by-three convolutions. We show a significant
improvement over the existing results in both accuracy and
processing speed.

Finally, we introduce the first publicly available simulated raw
signal benchmark dataset for speed-of-sound and attenuation
mapping. This dataset is described in Section II1. Although using
a simulated dataset has its limitations, the physics of acoustic
image formation is well understood; it is hard to impossible with
current technologies to acquire a significant real-data training set
with ground truth.

A. Background and Related Work

a) Ultrasound image formation: An ultrasound image
is generated by transmitting an acoustic pulse into the tissue [1],
often modeled as a sine wave multiplied by a Gaussian or
Hanning window. The most common imaging method is the
B-Mode (brightness) image, shown in Fig. 2(c). This is an image
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Fig. 2. B-Mode ultrasound imaging model. (a) shows the generating
speed-of-sound map, with the scanning beam model (blue) and actual
beam shape (green), (b) shows a sample raw “channel data” beam,
(c) shows the matching (cropped) RF line (black) and A-Line (Red)
(d) is the resulting B-Mode image. (e) Shows the overlaid speed-of-
sound model and the imaged discontinuities (blue) showing the dis-
tortion due to incorrect imaging speed-of-sound. (a) Reference speed-
of-sound map. (b) Sample pulse. (c) RF/A-Line. (d) B-Mode image.
(e) B-Mode with reference speed-of-sound.

reflections. Acoustic reflection results from discontinuities in the
acoustic impedance (speed-of-sound multiplied by the density
in the acoustic case). For direction incidence (1D case), the
reflection amplitude is roughly proportional to the difference
in acoustic impedance and can be described by the Zoeppritz
equations in the more general 3D elastic case [12].

The two main sources of information in the ultrasound image
are due to discontinuities in the speed-of-sound of the tissue
and speckle “noise”. Speed-of-sound varies when transitions
through different tissues such as organs, fat, tumors, and mus-
cles, creating the edge image. Speckle “noise” results from
multiple reflections from densely distributed (nearly) point scat-
terers, often referred to as the tissue echogenicity.

Significant work has been done on using speckle for quantita-
tive diagnosis in various domains [13], [14], [15], [16], [17],
[18], [19]. However, speckle structure is inherently sensitive
to the choice of both hardware and imaging parameters. As a
result, other than extreme cases such as cysts with no speckle
and fibrosis that severely degrades image quality and clarity,

the requirement for closely controlled capture severely limits
the ability to translate results to real-world scenarios.

Discontinuities in speed-of-sound may distort the image due
to refraction, and impact image quality due to the breakdown in
the imaging assumptions (constant speed-of-sound). Their spec-
ular nature can occlude them in some scenarios. Interreflection
can produce ghost images and other artifacts. Fig. 2 presents
the B-Mode image formation model. Fig. 2(a) is the generating
speed-of-sound (used for the simulation), and Fig. 2(d) shows
the resulting B-Mode image. The far end of the central ellipse is
almost completely missing, and other discontinuities are hard to
spot. Edges are misplaced due to an incorrect choice of the speed
of sound used in the delay-and-sum image formation model.
Fig. 1(a) also shows an example of temporal aliasing artifacts,
where reflections outside the field of view are displaced in time,
and as a result, distance, as they arrive after the following pulse
has already been transmitted.

A general-purpose ultrasound probe is an array of individ-
ual transducer elements, most often constructed of 128 to 192
piezoelectric elements that act as both transmitters (speaker)
and receivers (microphone). The B-Mode image is generated
by interrogating the domain with an acoustic beam (Fig. 2(a)).
The actual beam width (transverse resolution) is controlled by
the transmit frequency, and the transmit and receive apertures.
Individual beams are generated by transmitting using a (usually
small) number of elements at a time. The resulting per-element
signal is called the channel data (Fig. 2(b)). This in turn is
converted to an RF signal line via delay and sum focusing
(digital lens, a technique known as Kirchoff migration in the
seismic domain [12]). Exponential time-gain correction (TGC)
is applied to compensate for tissue attenuation and scatter-
ing. To this, in turn, envelope detection is applied to produce
the A-Line (amplitude line). The result is then filtered to re-
duce speckle noise and rasterized (interpolated) to produce the
B-Mode (brightness) image.

b) Shear-wave  elastography: B-mode provides
approximate boundaries and structure, not information about
the properties of the tissue. While images depend on physical
properties, the inverse relationship, determining properties from
the received signal, is non-trivial. Such quantitative inversion is
beneficial in determining tissue health, e.g. benign vs malignant
tumors [20]. The current state of the art for quantitative imaging
is Shear-Wave Elastography (SWE) [4], [5]. Elastography
is a method to create a tissue property map. It measures
tissue stiffness (shear modulus, and under some assumptions,
Young’s modulus), and can be thought of as quantitative remote
palpation. SWE is performed by transmitting a slowly traveling
mechanical shear wave (on the order of 1-10 m/s in healthy
tissue [21], [22]), and tracking the wavefront using the much
faster ultrasound pressure wave (having a mean speed-of-sound
commonly in the range of 1450-1650 m/s [1]); a stroboscopy
approach of sorts. SWE has been shown to have significant
diagnostic abilities [23], [24], [25], [26], [27], [28], [29],
this method is extremely sensitive to subject and sonographer
motion [30], suffers from very low frame rates, and has difficulty
imaging deep tissue. Due to high power requirements, it is also
limited to more expensive systems with specialized electronics.
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We utilize a U-net encode-decoder type topology. Input is a 64 x 2048 raw channel data or phase image, and output is a 128 x 256

speed-of-sound map. Each up/down sampling block consists of three consecutive convolutions, Relu activation, and batch normalization.

c) Speed-of-sound inversion: The speed of sound in
soft tissue generally varies in the range between 1450 m/s and
1650 m/s. Where in soft tissue, the shear-wave speed depends
mostly on the shear modulus and that of the pressure waves
depends on both the shear and bulk modulus. As such, the speed
of sound in fat is closer to the lower end of this range, while that
of muscle and tumors is on the higher end [31]. Recent research
has shown that speed-of-sound values have a diagnostic ability
similar to that of shear wave elastography [20], [31], [32], [33].

Ultrasound image formation is most commonly done under
the assumption of a constant speed of sound of 1540 m/s. Devia-
tion of the actual speed of sound in tissue from this value affects
image quality and results in a distorted image. The implication
is incorrect physical measurements when assessing things such
as organ dimensions. While longitudinal distortion due to devia-
tion from the correct speed of sound is minimal, as the variability
is averaged, transverse distortion can be significant when multi-
ple refractions are present. This requires significant experience
on the part of the sonographer in choosing an appropriate imag-
ing orientation, which is not always physically possible.

Using the speed-of-sound maps has a significant advantage
over SWE in that the speed of sound is recovered directly from
the pressure wave signal. As a result, speed-of-sound techniques
are capable of significantly higher frame rates. Current inversion
techniques however are extremely computationally intensive,
require multiple frames and/or large amounts of data, and depend
on a good system response model, calling for novel methods both
in the medical and seismic domains.

A correct, or at least improved, speed of sound map, can also
be used to correct image distortion and improve image quality.

Longitudinal speed-of-sound inversion has a long history in
the seismic domain, both for imaging and for inferring ground
characteristics. These methods can be roughly categorized into
two groups. The first, full waveform inversion (FWI), is a

differential inversion technique capable of high resolution but is
extremely sensitive to the initial conditions. The second, travel
time tomography, is an integral first arrival method, i.e., an
inverse Radon transform without the straight ray assumption of
x-ray computerized tomography (CT); as such, it produces much
smoother results but struggles with recovering discontinuities.
In imaging terminology, FW1 is sensitive to the blank wall prob-
lem, i.e., cannot recover information where there is no strong
reflector. Travel-time tomography is sensitive to limited aperture
reconstruction. It requires a large aperture, and cannot recover
variability in orientations where there are no cross beams. Both
have been investigated in the context of ultrasound imaging,
significantly in breast imaging [32], and in limb imaging [34].
These systems require significant computations, special capture
topology, and custom hardware. Results have also been pre-
sented using a standard probe topology based on various travel
time methods [35], [36], [37], [38], [39]

Recently, deep learning methods for speed-of-sound inver-
sion, capable of real-time single-sided imaging, have been in-
troduced in the ultrasound domain [7], [11], [40], and have
been replicated in the seismic domain using mostly the same
approach [41], [42]. Generalization to real data however is still
limited, due, among others, to dependence on system parameters
and limitations of simulation-based methods.

B. Contributions

Our contributions presented in this paper are as follows:
® We present a new signal preprocessing approach utilizing
the phase information of the IQ demodulated signal. This
decouples the attenuation and gain due to the sonogra-
pher interaction and the unknowns in the tissue scattering
and the viscoelastic response by removing the amplitude
information. This, in turn, improves the generalization
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of simulation-based results to real data providing more
procedure-agnostic results.

e We present an optimized speed-of-sound inversion net-
work topology in medical ultrasound imaging, signifi-
cantly improving on the state-of-the-art in both perfor-
mance and processing speed.

e We present the first large-scale public benchmark (syn-
thetic) dataset to test and compare plane-wave methods in
medical ultrasound.

[I. METHOD

Toward our goal of generating speed-of-sound and attenua-
tion maps (inversion), we utilize a U-net-type encoder-decoder
network [43]. We present our network setup in Fig. 3. The
input is the 64 raw channel data traces by 2048 samples or
the corresponding 64 x 2048 1Q-phase data traces. The output
is a 128 x 256 speed-of-sound map. Each encoder block layer
consists of three layers. Each of these, in turn, chains a 3 x 3
convolution, a Relu activation function, and batch normalization.
In the first four-layer blocks, reduction in the time axis is
performed using a strided convolution in the last layer (without
downsampling in the channel, or spatial, axis). In subsequent
layers, we use 2 x 2 max pooling. The decoder path consists
of a factor of two upsampling, followed again by three layers
consisting of a 3 x 3 convolution, a Relu activation function,
and batch normalization. The final stage isa 1 x 1 convolution
to produce the output image. Skip connections are applied to the
inner three layers.

We use a sum of squared differences (MSE) for the loss
function for training. To assess the results, however, we utilize
a mean absolute error measure, as this provides a significantly
more meaningful result. The root mean square error (RMSE)
is sensitive to outliers resulting from small inconsistencies in
the boundary location. Small discrepancies are less important
considering the variation in scale between the simulation and
reference resolution as well as discrepancies that are caused by
small errors in the recovered speed-of-sound map.

Training is performed on a synthetic dataset of 9216 (9 x
1024) training samples, 1024 testing samples (see Section III for
more details). The results are then validated on a 1024 sample
validation set. The data are produced by randomly generating the
speed-of-sound and attenuation maps, numerically simulating
the resulting channel data signals, cropping and scaling the
speed-of-sound map and simulated signals to the expected input
and output resolutions, and switching roles between input and
output for training.

The signal is preprocessed during the training step as follows
to minimize over-training and improve transfer learning:

1) (Optional) matched filter

2) Gaussian (white) noise, random amplitude normally dis-
tributed between 1% and 100% of the signal standard
deviation

3) Quantization noise (multiply the signal by 4096 and round
to digitize the signal)

4) Random channel drop of 0-2 channels

ol g
£

o 0 2

30 40
Channel

(a) Channel data

(b) Phase data

Fig. 4. Comparison of (a) raw channel data and (b) post-processed
phase data.

We found that matched filtering is too efficient at denoising
during training and induces over-training if applied post-noise.
The signal is then IQ-demodulated for processing.

A. Phase Based Inversion

Sonographer interaction, physics, and electronics dictate four
main sources of scan-to-scan variability in the ultrasound signal,
even when using the same hardware 1) fixed gain (constant
scaling), 2) time-dependent attenuation, scattering, and gain
correction, 3) pulse center frequency, and 4) pulse bandwidth.
While we know the center frequency and bandwidth, attenuation
and gain are difficult, or impossible, to fully calibrate in the
clinical setting, making deployment significantly harder.

As shown by the testing results, speed-of-sound recovery from
raw ultrasound data is sensitive to correct, or at least consistent,
gain correction and scaling to a point that is nearly impossible to
achieve in real-world conditions. This also means that recovery
is sensitive to the quality of probe-skin contact.

Training the network for resilience to a constant gain factor
by randomly scaling input signals, somewhat works, although
not well (Table II. Attempting to do the same for dealing with
variability in the time-gain correction performs even worse.
Neither results translate to real data.

We propose a different approach for removing most of the
system response from the signal. We perform IQ demodulation
of the signal, i.e generating the in-phase (I) and quadrature
(Q) components by multiplying the signal by a cosine and
sine respectively, and applying a low pass filter [9]. We next
use the complex notation s = I + (), taking the argument of
the results, i.e. # = tan~1(I,Q), and train the network on this
phase component. This almost completely decouples the fixed
gain, attenuation, time gain factor, and center frequency from
the data. The effect is shown in Fig. 4. We presume that most
of the information pertaining to the existence of the pulse lies
in the signal-to-noise level of the resulting signal. Interestingly,
the resulting network is sensitive to the actual pulse frequency
and shape (bandwidth), where we found it impossible to train
the network effectively to deal with different pulse shapes at the
same time. This can be mitigated by applying a Wiener filter to
shape the date as expected.

Worth noting, while we expected phased wrapping artifacts
to cause issues, applying phase unwrapping to the phase signal
deteriorated the results significantly. This is due to a phase drift
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effect, i.e. the phase signal is not a zero-mean process, with
a significant drift in mean value over time. As a result phase
unwrapping drowns out the important signal. Our experiments
have shown that applying the network to the raw phase signal
worked significantly better than any manual prepossessing of
the unwrapped signal that we tested.

B. Joint SoS and Attenuation Recovery

As a means to test the hypothesis that most of the information
pertaining to attenuation and time-gain correction is removed
from the signal using our proposed approach, we look at the
network’s ability to recover the attenuation coefficient. To this
end, we compare attenuation recovery and joint speed-of-sound
and attenuation recovery from the raw signal, to attenuation
recovery from the phased data.

When performing joint speed-of-sound and attenuation inver-
sion, to compensate for the fact that the losses differ by several
orders of magnitude, with the speed-of-sound MSE factor on the
order of 1000 on a trained network, while the «v attenuation MSE
factor is on the order of 0.05. We thus use a weighted sum of
the squared difference loss function, multiplying the difference
in attenuation fields A = 4 - 10%.

L=|C — Coll + & llor — axll3 (D

where C' and « are the speed of sound and attenuation values
recovered by the network, Cy and o are the known target values,
and A is the normalizing factor.

I1l. DATASET AND CODE

The code and model [44] and the data [45] are publicly
available for download. The full dataset consists of 112640
simulations splitinto 9216 simulations in the training set, 1024 in
the validation set, and 1024 in the test set. The measured signal is
simulated using the k-wave [46] MATLAB toolbox. Simulations
were performed for nine plane waves at 0, =8, £16, =24, and
432 element offsets, with corresponding wavefront angles of 0,
+6.7, £13.7, £20.2, and +-26.3 (the time delay is calculated
based on 1540 m/s so the actual angle will differ per sample),
set to pass through the center of the domain. See Fig. 5 for
details (three of the 9 plane waves are shown to reduce clutter).
Each simulation was performed with two center frequencies,
2.5 MHz and 5 MHz, with a Gaussian window (pulse width) of
5 oscillations.

A. Simulation Setup

Each simulation comprised of 1152 x 1152 random speed-
of-sound and « (attenuation) coefficient maps following power
law attenuation [dB /cm/MHz?] in a domain 42.35 x 42.35 mm
in size (see Fig. 5(a)).

The domain is constructed by layering a randomly selected
set of ellipses and half-planes. For each of the resulting domains
(organs), we randomly selected the speed of sound, the attenua-
tion coefficient, the speckle density, and the speckle amplitude.
Domains were verified to not slice the probe face; i.e. the re-
sulting maps are verified not to have a discontinuity at the probe

37.5 mm
|
f !
: 18.68 mm Offset

A | -
| 1 !

domain

I
_ /I Imaging / -

37.5 mm
wuw ¢ 7Y

42.5 mm

(a) Simulation setup

element dx

kerf
(b) Array

Fig. 5. Image (a) shows the k-wave simulation setup. The US array
is placed at line 60 of the numerical grid. Due to kerf, slightly less than
half of the array (64 elements) is excited to generate the outgoing plane
wave. To better match the actual signal and avoid artifacts, a continuous
section is excited. The angle is set based on an assumed 1540 m/s
speed of sound so that the plane wave overlaps the center of the
domain. Image (b) shows the array structure, with four active elements
and four kerf elements interleaved. The recorded signal is the average
of the four receiving cells for each element.

face. A sample speed-of-sound map and simulation geometry
are shown in Fig. 2(a). Cropped sample speed-of-sound maps
used as the recovery targets are shown in Fig. 6(a) and (b).

The speed of sound range is 1300 {m/s} to 1800 {m/s}. The o
coefficient range is 0.05 to 0.15 dB /cm /MHz?2. The background
density is set to 0.9 g/cm? (density of fat).

Speckle noise is randomly generated in the density domain
so as not to affect the wavefront propagation speed (uniformly
distributed point sources with 2—10 points per wavelength and
uniformly distributed amplitude at +10%).

B. Probe

To match our physical hardware, we simulated a 128-element
array with 64 active transmit elements. The simulation was
carried out with two pulse center frequencies, 2.5 MHz and
5 MHz with a Gaussian window of 5 oscillations.

The central plane wave (zero degrees) is centered at elements
3310 96. The probe face is placed at y = 60 (outside the perfectly
matched layer) and centered on the x axis. The numerical receive
array is 4 elements per sensor element, with a matching kerf
(spacing) value, i.e., 4 on 4 off (see Fig. 5(b)). The signal for each
receiver is summed across the 4 receiver elements to generate
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Fig. 6.  Sample results: SoS recovery from raw data. Each grid shows

the matching results on 7 (H) by 6 (W) speed-of-sound maps. Signal
in simulation travels top to bottom (probe is at the top pointing down)
(a) and (b) show the true speed-of-sound map (cropped and scaled from
the original) for the train and test sets respectively. (c) and (d) show
the recovered speed-of-sound maps using raw input. (g) and (h) show
the same for IQ-phase input. (e) and (f) show the absolute error for the
recovery on the raw signal and (i) and (j) show the error on the 1Q-phase
signal. Speed-of-sound is capped at 1300-1800 m/s and the error at
0-50 m/s.

the 128 receive channels, and the signal is down-sampled to
a 40 MHz sampling rate (ADC rate). For the transmit signal,
we use a continuous array, as we found that it better matches
real-world signals, so for the centered plane wave, a source is
placed on all pixels with y = 60 and 322 < 2 < 830 with a zero
time delay on all elements.

[V. EXPERIMENTAL RESULTS

Based on results from [7], within the current framework com-
bining multiple plane waves is best done by averaging results
over all views. As such, there is no added value to address
multiple plane waves for this assessment, so in the interest
of reducing clutter and maximizing clarity in the experimental
results we focus on assessing reconstruction using a single plane
wave at 0 degrees.

We start by looking at the performance of both our new
optimized network topology (Fig. 3) and the proposed 1Q-phase
preprocessing. The results for the training and testing synthetic
datasets are presented in Fig. 6 and Table I. Results are compared
to previous works [7] (denoted as TBME) and [11] (denoted
as EMBC). All implementations are for a single view plane
wave at direct incidence (propagation direction longitudinal to
the probe face). To isolate the two modifications, we compare
speed-of-sound recovery from raw channel data as was done in
prior works (effects of network topology), and recovery from
the IQ phase data. All error values are mean absolute errors
and are measured in m/s. We use this error measure as it is less
sensitive to small displacements in the location of the discontinu-
ities in the images than the root mean square error and thus more
indicative of the quality of the results in this context as it gives a
better indication of the expected error in local speed-of-sound.
To assess sensitivity to depth (both decreased aperture size and
increased additive error), in addition to global error, we break
down error values by depth. We split the domain into three
non-overlapping distance bands (a third of the distance range for
each), denoted as near, mid, and far. All networks were trained on
the same dataset. It should be noted that for this work we employ
a more difficult dataset than previous works. The dataset uses
both elliptical and linear reflectors, spatially varying random
attenuation (« coefficient), and spatially varying random speckle
noise levels. Training and testing were performed on the data
with a fixed time-gain profile.

As can be seen in the results, the optimized network topology
is significantly better than the first results in the field [7] (TBME),
and also better than the improved results presented in [11]
(EMBC). Using raw data does perform better than 1Q-phase
based recovery in this case where there is a consistent system
response (i.e. controlled and fixed gain profile), however, not sig-
nificantly so. Run times are roughly half those of [11] and about
equivalent to [7]. Results do degrade with distance, suggesting
that as expected, effective depth will depend on array size. This
suggests that replacing the raw signal with the 1Q-phase signal
can produce at least comparable results.

Next, we test how well the system can be trained to handle a
varying scaling and gain profile, that is, address the uncontrolled
system response we are aiming to address with this work. We
do this by randomly varying the scaling factor and time-gain
profiles. This is where the advantage of the proposed IQ-phase
input becomes apparent. Results are shown in Table II. To
simulate the variability in real data, we compare the previous
network training results (raw), to the results when scaling each
input signal by a random constant, uniformly sampled in the
range 1072 to 102 (raw w/ scale), and applying both a randomly
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TABLE |
COMPARING THE SPEED OF SOUND RECOVERY FOR THE TRAINING AND
TESTING DATASETS

Method Mean | Near [ Mid | Far
Train
Ours - raw 9.2 8.7 9.4 9.3
Ours - phase 12.3 11.2 12.5 13
TBME 24.2 23 26.2 | 234
EMBC 13.6 13.2 14 13.6
Test
Ours - raw 32.5 21.8 329 | 427
Ours - phase 40.7 29.5 | 395 | 52.8
TBME 68.5 456 | 774 | 822
EMBC 43.8 279 | 47.6 | 55.8

Results shown for prior works, [7] (TBME) and [11]
(EMBC). These are compared to the modified network
Using raw channel data input (ours - raw), as with prior
works, and using the proposed IQ-phase input (ours -
phase). All error Values are in mean absolute errors in
m/s, broken down by Global mean, and near, mid, and far
thirds of the distance.

TABLE Il
EFFECTS OF APPLYING RANDOM SCALING AND RANDOM GAIN
COEFFICIENTS TO THE INPUT RAW CHANNEL DATA SIGNAL

Method Mean | Near | Mid | Far
Train
Phase 12.3 11.2 | 125 13
Raw 9.2 8.7 9.4 9.3
Raw w/ scale 6.6 6.4 6.6 6.7
Raw w/ gain 25.3 32 244 | 194
Test
Phase 40.7 29.5 | 39.5 | 52.8
Raw 32.5 21.8 329 | 42.7
Raw w/ scale 48.3 38.2 | 47.8 | 58.8
Raw w/ gain 58.5 51.3 | 584 | 65.7

Errors are absolute mean errors measured in m/s.

TABLE IlI
RESULTS FOR RECOVERING ATTENUATION FROM RAW DATA vS. PHASE

Method | Mean | Near [ Mid [ Far
Train
Raw 0.003 | 0.003 | 0.003 | 0.003
Phase 0.003 | 0.004 | 0.003 | 0.003
Test
Raw 0.009 | 0.009 | 0.009 0.01
Phase 0.023 | 0.025 | 0.021 0.022

Values are the mean absolute error in the alpha coefficient.

varying exponential time-gain profile uniformly sampled in the
range =5dB/cm, with the same random scaling coefficient (raw
w/ gain). While errors on the training data remain manageable,
results on the test data, when using the raw input signal as
before, degrade significantly. This implies over-training with
no generalization to unseen data. The results when using the
phase input remain unchanged in both cases, suggesting that both
effects have been removed from the data by this preprocessing.

As another measure of how well the IQ-phase preprocessing
decouples the gain and scaling system response, we look at atten-
uation recovery. Recovering attenuation maps can be thought of
as the dual of recovering gain. To test this, we train the network
to recover the attenuation coefficient («v coefficient), rather than
the speed-of-sound, as presented in Table III. The « coefficient
is randomly set with uniform distribution in the range of 0.05
to 0.15 dB/cm/MHz?. When using the raw signal as input,
the « coefficient can be mostly recovered. For the IQ-phase

TABLE IV
COMPARING RECOVERY RESULTS FOR A MISS-MATCHED PULSE SHAPE

Method Mean [ Near [ Mid | Far
5 MHz
5 cyc. (ref) 40 30 40 52
5 cyc. w/matched 43 31 43 55
4.4 cyc. 77 74 88 70
4.4 w/Weiner 42 31 42 51
4.4 w/matched 69 62 79 67
2.5 MHz
5 oye. 24 [ 140 | 131 [ 102

The reference pulse is at 5 MHz and 5 cycles. The first
comparison is for training the network with a matched. The
next three compare applying the same network weights to a 5
MHz 4.4 cycle pulse, as-is, after applying a wiener filter, and
with a matched filter network. Finally, compared to a 2.5 MHz
pulse with 5 cycles.

information, however, there is significant over-training, with no
generalization to the test data. The mean absolute error using
IQ-phase information with regard to the test data is 0.023. For
reference, the mean error with respect to the center value is
0.025. This implies that little to no information on attenuation
is left in the signal.

To test whether training results transfer to pulses with a
different center frequency and bandwidth (sensitivity to pulse
shape), we use the network weights trained on a 5 MHz center
frequency pulse with a 5-cycle Gaussian window and apply the
network to a test set generated with a 5 MHz pulse with a 4.4
cycle window and to a test set generated with a 2.5 MHz pulse
with a 5 cycle window. Applying a matched filter and a wiener
filter is only applicable verbatim with the 4.4 cycle pulse at
5 MHz, as linear filters cannot shift frequency.

The results for the test error for the 5 MHz pulse at 4.4 cycles
are presented in Table IV and the results for the 2.5 MHz pulse
in Table I'V.

To assess the stability of the approach, we turn our attention to
real data. Fig. 7 shows inversion results for the calf of a human
participant from a posterior view. Experiments were carried
out using a protocol approved by the MIT Committee on the
Use of Humans as Experimental Subjects (COUHES). Fig. 7(a)
shows the reference b-mode image, with a layer of subcutaneous
fat at the top, the gastrocnemius muscle next, and the soleus
muscle underneath. Fig. 7(b) shows the inversion results using
IQ-phase data, compared to speed-of-sound and attenuation
from the raw channel datain Fig. 7(c) and (d) respectively. While
all samples differentiate fat from muscle tissue the speed-of-
sound recovered from raw channel data overshoots the expected
values significantly. The value for fat is far below expected
(1440 m/s, standard deviation 21.9), and above expected for
muscle (1588 m/s, standard deviation 21.6) [47]. Attenuation
is close to the expected values of 0.08 for fat and 0.16 for
muscle. The results based on the IQ-phase input are significantly
more stable and close to the expected values throughout, also
differentiating the higher velocity fascia tissue from the muscle.

Fig. 8 shows results for an agar-agar inclusion in a gelatin
phantom. This provides a more controlled assessment of
stability to changes in the input signal, including amplitude and
gain changes. The results show that using the 1Q-phase input
provides significantly more stable results that are agnostic to
change in input.
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Fig. 7. Human participant, calf image (Gastrocnemius and Soleus %b
muscles): (a) Shows the B-Mode image, showing the probe’s acoustic =
lens (thin bright line on top), subcutaneous fat layer (slightly darker bright 2
section just below), down to the fascia (bright line) differentiating the 2
discontinuity with the Gastrocnemius muscle, then the fascia between 3
the Gastrocnemius and soleus muscles. (b) Speed-of-sound (m/s) map
recovered using phase-based inversion. This shows the differentiation
between the lower speed of sound in the fat layer and the higher speed
of sound in the muscle. (c) and (d) Recovered speed-of-sound and
attenuation maps from the raw signal. We see a significantly improved )
transfer learning from the phase-based inversion. R
g
)
The inclusion was made using 1 part agar-agar to 10 parts i
water with 5 grams of graphite to 300 grams of phantom material
for speckle. The background was made from 1 part beef gelatin x feml x feml xfeml
to 12 parts water, with 5 grams of graphite to 550 grams mixture. . . .
p & grap & Fig. 8. Results for physical phantom (agar-agar inclusion, speed-of-

Speed-of-sound of sound in the inclusion was measured at ap-
proximately 1650 m/s, and in the background at approximately
1500 m/s.

The top left image shows the b-mode image of the phantom.
Top right, top image, shows the inversion results for the material
used for inclusion (independent of the phantom), and bottom
images show the inversion results for background material.
These show results consistent with the expected value when
measured independently of a full phantom. The grid compares
inversion results for our network trained on IQ-Phase input (first
column), raw channel data (second column), and raw channel
data trained with random scalar multiplier and exponential gain
factor. The rows show inversion results for the raw signal without
gain or amplification correction (first row) and two amplification
factors, 2 - 104 and 5 - 10~ (second and third row). These were
tested to be close to true values.

The 1Q-phase-based inversion is shown to be effectively ag-
nostic to both amplification and gain while recovering speed-of-
sound that are both close to the correct results as well as to the
values recovered when imaging the background and inclusion
materials independently. There are however still some artifacts
inside the phantom and some bleeding from the higher speed
inclusion onto the background. These are probably due to a

sound ~1650 m/s, gelatin medium, speed-of-sound ~1500 m/s). Ref-
erence B-Mode image is shown top-left. Speed-of-sound inversion for
inclusion material and background material samples shown top right.
The columns show the results for inverting for speed-of-sound using the
IQ-phase information, raw channel data, and raw channel data trained
by randomly varying the gain and scaling of the data. The rows show
results for inverting using the uncorrected input signal, scaling the signal
by a factor of 2 x 1074, and a factor of 5 x 1074,

training with real data and limited SNR in the shadow areas. In
contrast, the inversion with the network trained on raw data is
unstable, with results on uncorrected input being completely
corrupt. The recovered speed-of-sound is fully dependent on
amplification for the gain-corrected signal. While the inversion
results when the network is trained on the raw signal by varying
gain and amplification are more stable, they still vary signifi-
cantly with amplification and gain.

V. CONCLUSION

In this paper, we present a novel approach to train and run
the neural network in an operator-agnostic manner, utilizing the
complex phase of the IQ signal rather than raw input values.
The results show that inversion from IQ-phase is viable and
improves the stability to variability in the input while at the same
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strengthen the claim that, given calibrated real data, transfer
learning can be employed to adapt the network to real data. That
is however the subject of future work due to the current lack of
real training data.

We also present the first publicly available synthetic bench-
mark for speed-of-sound inversion in medical ultrasound, to
promote further contributions to the advancement of the field.
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