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Abstract—Detection and segmentation of surgical instruments
is an important problem for laparoscopic surgery. Accurate
pixel-wise instrument segmentation is a useful intermediate task
for the development of computer-assisted surgery systems, such
as pose estimation, surgical phase estimation, enhanced image
fusion, video retrieval and others. In this paper we describe a
deep learning-based approach to instrument segmentation, which
addresses the binary segmentation problem in which every pixel
in an image is labeled as instrument or background. The key
novelty of our approach relates to the use of training data which
is inexpensive and fast to acquire. First, our approach relies on
weak annotations provided as bounding boxes of the instruments,
which are much faster and cheaper to obtain than a dense
pixel-level annotations. Second, to further improve the system’s
accuracy we propose a novel approach to generate synthetic
training images. Our approach achieves state-of-the-art results,
outperforming previously proposed methods for automatic in-
strument segmentation, based only on weak annotations.

I. INTRODUCTION

Laparoscopic surgery has changed surgical practice by
reducing operative trauma, visible scars and the hospital-
ization period. In such minimally invasive surgery (MIS),
surgeons access the body through several small incisions and
observe the internal anatomy using one or more cameras.
Most interactions with the internal anatomy and organs are
therefore recorded digitally. The availability of such visual data
combined with the difficulty and steep learning curve of MIS
motivates the pursuit of vision-based approaches for analysing
laparoscopic videos and the development of computer-assisted
interventions (CAI) systems. The detection and segmentation
of laparoscopic instruments, the tools used by the surgeon
during the MIS, is an intermediate task in the development of
various computer vision algorithms. These include, amongst
others: surgical workflow analysis [1], surgical safety [2],
[3], and surgeon skill assessment [4], [5]. These algorithms
form the core for surgical assistance systems that range from
improving the surgery’s outcome, through operating room
optimization, to surgeon training. Hence, developing reliable
methods for surgical instrument detection and segmentation
has the potential to advance multiple fields of research.

Instrument segmentation can be treated as a binary or
instance segmentation problem for which classical ML al-
gorithms have been applied using color and/or texture fea-
tures [6]. Others formulated this problem as semantic seg-
mentation, aiming at distinguishing between different instru-
ments [7]. Recently, deep learning-based approaches have
demonstrated superior performance over conventional ML

methods for many problems in general computer vision do-
main [8], [9] as well as for the medical domain [10], [11]. Pre-
vious deep learning-based applications to instrument segmen-
tation have demonstrated competitive performance in binary
segmentation [12], [13] and in multi-class segmentation [14].

When using supervised deep learning-based approaches
for solving instrument segmentation, a limiting factor is the
relative scarcity of annotated data. Supervision is usually
provided as bounding box coordinates for tool detection and
as pixel-level annotations for tool segmentation. Bounding box
annotations are relatively easy to collect compared with pixel-
level annotations. However, previously proposed detection-
style methods which use this form of annotation directly have
difficulty in localizing the tools precisely; this is due to the
fact that the bounding boxes usually include a large portion of
the background. Therefore, most of the existing methods rely
on pixel-level annotations, which are very time-consuming and
expensive to collect at scale. In our experience, annotating a
single image with a bounding box is much faster than pixel-
level annotation (generally seconds vs. minutes).

In this paper we propose a novel approach to deal with
the paucity of training data. Our method relies on weak and
fast annotations provided as bounding boxes of the instru-
ments. This data is further augmented with novel synthetic
training images. Our approach achieves state-of-the-art results,
outperforming previously proposed methods for automatic
instrument segmentation, based on weak annotations only.

The main contributions of this paper are threefold:

1) We introduce a novel approach for instrument segmen-
tation in laparoscopic surgeries that relies on weak and
fast annotations provided as bounding boxes.

2) We propose to incorporate synthetic images into the
training. The generation of the synthetic images is done
by rendering laparoscopic scenes using Blender3D [15],
and then making these images more realistic by applying
CycleGAN.

3) We show that training on the combination of automati-
cally generated segmentation with our synthetic images
outperforms previously proposed methods.

The remainder of the paper is organized as follows. Sec-
tion II provides a review of the related work. Section III
describes the methods we propose. Section IV describes the
datasets we use. The results and their discussion are presented
in Section V. Finally, Section VI concludes the paper.
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Fig. 1. Overview of our approach: Given a dataset of laparoscopic images and their corresponding bounding box annotations, we generate pixel-accurate
segmentations using DeepMAC. Synthetic images are generated by Blender3D and are then passed through CycleGAN which performs domain adaptation.
To train the segmentation model, the above types of data are combined. Images are in yellow, annotation and automatic masks are in blue. The crossed circles
combine the read data with the synthetic one.

II. RELATED WORK

An early comparative study of vision-based methods for
instrument segmentation in laparoscopic surgery was presented
in [16]. The segmentation methods described in this paper are
based on either on random forests or relatively old CNNs.
For example, [17] uses Random Forest classifier to distinguish
instrument pixels from background pixels in a feature space
where each pixel is represented by values from multiple color
spaces and by gradient information. The dataset they used is
relatively small compared to [18].

The largest comparative study on surgical instrument seg-
mentation conducted recently is described in [18]. They orga-
nized the Robust Medical Instrument Segmentation (ROBUST-
MIS) challenge. They described ten different methods that
participated in the challenge, ranging from 2D U-Net vari-
ants (TernausNet [19], multi scale U-Net [20]) to different
implementations of the Mask R-CNN [21] with a ResNet
backbone to the DeepLabV3 [22] network architecture. We
use the dataset in this paper to evaluate our approach and
show that we outperform their best performing method.

In [23] the authors present an attention-pruned multi-task
learning model (AP-MTL) by optimizing the task-aware MTL
model to obtain the same optimal convergence point for
multi-tasks. They use skip-scSE [24] to reduce sparsity and
redundancy in the decoder. The evaluation provided in the
paper is on the EndoVis2017 dataset [25].

In [26] the proposed approach relies on weak annotations
provided as stripes over the objects in the image. Then partial
cross-entropy is used as the loss function of a fully convolu-
tional neural network to obtain a dense pixel-level prediction
map. While the proposed stripes can be more intuitive for
a novice annotator, we have witnessed that the experienced
annotators we work with prefer bounding-box annotation.
Moreover, bounding boxes annotation is common practice,
leading to availability of numerous pre-trained models. The
stripes approach is limited to representing the instruments
which are rigid, while it is harder to extend to generic surgical
objects that can be non-rigid like specimen-bags.

In [27] the authors propose a method for segmentation
of surgical tools without any manual annotations. They au-

tomatically generate labels for surgical tool segmentation
by performing a semi-synthetic blending. Their approach is
not end-to-end, as it requires post-processing. Moreover, the
process of acquiring the semi-synthetic data is time-consuming
since foreground data is needed to be captured by placing
sample surgical instruments over a chroma key (a.k.a. green
screen) in a controlled environment. While their results are
impressive, they have not evaluated their approach on the
most challenging datasets like EndoVis2019 [18]. In [28] the
authors use CycleGAN [29] to correct automatically generated
segmentations of robotic instruments produced by inverse
kinematics. The training data is produced automatically but
the results of their method is inferior compared to the accuracy
of fully supervised algorithms.

Recently, to alleviate the need for annotation, simulation
methods were proposed to produce synthetic data [30]–[33].
Simulation data can generate reliable training labels but has
significant limitations in reproducing realistic features. To
transfer the realistic style from real surgical frames to sim-
ulated ones, bridging the domain gap between simulation and
real endoscopic images, image-to-image translation (I2I) is
employed for transfer of style features from different image
domains without the need for paired-samples. The works
of [34], [35] also bridge the domain gap between simulation
and real endoscopic images, by using joint and teacher–student
learning approaches that learn from annotated simulation data.
The results obtained are visually impressive, though the accu-
racy of the proposed methods is still lower than the accuracy
of the segmentation models trained on real data.

III. METHODS

The overview of our approach is demonstrated in Figure 1.
Given a dataset of laparoscopic images and their corresponding
bounding box annotations, we automatically generate pixel-
accurate segmentations using the DeepMAC [36] (see Sec-
tion III-A). In parallel, we generate synthetic training images
by rendering scenes using Blender3D (see Section III-B). To
bridge the gap between the generated synthetic images and real
laparoscopic domain we use CycleGAN (see Section III-C).
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(a) (b) (c)

Fig. 2. Automatic segmentation: Given image (a), we annotate a bounding box around each instrument (b). Then we automatically generate the segmentation
for each instrument based on the bounding box (c) using DeepMAC.

Finally, to train the segmentation model, which will be used
for inference, the images and their segmentations generated by
the DeepMAC are combined with the synthetic images with
their pixel-accurate segmentations into a single training set.

A. Automatic Segmentation Generation

Our approach relies on weak and fast annotations pro-
vided as bounding boxes of the instruments. Given an image
(Fig. 2a), we annotate a bounding box around each instrument
(Fig. 2b). Then we automatically generate segmentation for
each instrument based on the bounding box (Fig. 2c). This
accurate automatic generation of the segmentation is possible
due to the recently proposed method known as DeepMAC [36].
The method builds instance segmentation capabilities on top of
CenterNet [37], a popular anchor-free detection deep network
that models each object by the center of its bounding box. In
order to predict bounding boxes it outputs 3 tensors:

1) A per-class heatmap which indicates the probability of
the bounding-box center being present at each location.

2) A class-agnostic 2-channel tensor indicating the height
and width of the bounding box at each center pixel.

3) Since the output feature map is typically smaller than
the image, CenterNet also predicts x- and y-offsets to
recover this discretization error at each center pixel.

To extend the approach to segmentation, as explained
in [36], a fourth pixel embedding branch P is added in parallel
to the box-related prediction heads. For each bounding box
b, a region Pb is cropped from P corresponding to b via
ROIAlign [21], which results in a 32×32 tensor. Each Pb is
fed to a second stage mask-head network, which is based on
the Hourglass architecture [38]. The final prediction is a class-
agnostic 32× 32 tensor which is post-processed into a binary
mask at test time by applying a sigmoid and thresholding at
0.5. This mask-head is trained via a per-pixel sigmoid cross-
entropy loss averaged over all pixels and instances.

For automatic generation of the pixel-accurate segmenta-
tions from the given bounding boxes of the surgical instru-
ments we use the above DeepMAC network as implemented
in [36], which has been trained on the COCO dataset [39].
In this paper we assume that the only ground-truth available
for laparoscopic scenes is provided as bounding boxes only
and no masks are available. Therefore, we run DeepMAC
inference that receives as input both an image as well as its
corresponding bounding-box(es). Due to the presence of the

bounding box, the first stage of the network may be skipped.
Instead, the inputs may be fed directly into the second stage
mask-head network, thereby producing segmentation mask(s)
corresponding to the input bounding-box(es). Interestingly, we
note that no additional training of DeepMAC on surgical
tools is required; rather, we use network as pre-trained on
the COCO dataset only. Empirically, we see that this is
sufficient to produce reasonably quality segmentations of the
tools corresponding to their bounding boxes.

After generating pixel-accurate segmentations for the train-
ing examples, we train another segmentation network, which
is based on CenterNet architecture with the fourth pixel
embedding branch, as explained above. The new network is
trained using the ground-truth, which includes both bounding
boxes and pixel-accurate segmentation.

As demonstrated in Figure 2(c) usually the automatic seg-
mentation is very accurate. However, in some cases, specifi-
cally the ones where the bounding boxes of the instruments are
overlapping, the segmentation is not perfect. An example of
such case can be seen in Figure 3. To overcome this problem
and to improve the overall accuracy even further we propose
the following approach to generate synthetic training images.

Fig. 3. Limitations of Automatic Segmentation: when the bounding boxes
are overlapping the results of the automatically generated segmentation are
not always satisfactory.

B. Synthetic Data Generation

Generation of annotations is an expensive process, espe-
cially for medical data as it requires special expertise. In
contrast, annotations of synthetic data can be easily produced
as part of the generation process (e.g. Fig. 4d). We use
Blender3D [15] to render synthetic images of laparoscopic
scenes. The scenes are made of 3D models of laparoscopic
tools and 3D models that depict the background in an ab-
dominal environment (e.g. Fig. 4a). An endless number of
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(a) (b) (c) (d)

Fig. 4. Synthetic dataset: (a) A synthetic image is created by constructing a 3D scene of laparoscopic tools, 3D models representing abdominal organs as
background, lighting and camera. (b) 3D rendering software renders the 3d scene from the camera view point. (c) Variability is created by randomizing tool
and background types and position. Further variability is achieved by altering the texture of the tools. (d) Accurate segmentation masks can be generated by
the same rendering tool.

different scenes can be generated by varying the combination,
position and orientation of tools and background models;
examples are shown in Fig. 4b and Fig. 4c. Further variability
can be achieved by randomizing the texture of the tools and
backgrounds. The lighting and camera parameters are set to
match the specifications of typical endoscopes. To further
increase the variability of the the synthetic dataset, we use
frames from real laparoscopy procedures as background to
the synthetic tools. We extract the background frames from
the Cholec80 [1] dataset. The Cholec80 dataset has per frame
tool presence annotations. We use these annotations to select
frames without any tools present. This way we guarantee
that the only tools in the rendered images are the synthetic
tools. The large number of combinations of tools, background
models and lighting conditions lead to enables large variability.

Fig. 5. Synthetic Data Contribution: The contribution of synthetic data to
the segmentation performance increases with size of the synthetic dataset. The
blue curve: without the use of CycleGAN, the orange curve: with CycleGAN.
(Results shown for Endovis2019, Stage 3, Dice criterion.)

C. Domain Adaptation
Our approach for generation of synthetic images aims to

make the 3D scene as close as possible to real laparoscopic
images. Nevertheless, there remains a gap between the ren-
dered and the real images. This is evident in the low accuracy
achieved by training only on the 3D rendered dataset (blue plot
in Fig. 5). To close this gap we train CycleGan [40] to perform
domain-adaptation between the 3D rendered images and real
laparoscopic images. We transform the 3D rendered dataset
using the trained CycleGAN model to create the final synthetic
dataset, which consists of images resembling real laparoscopic
domain (Fig. 6). Both the accuracy and the convergence speed
of the new dataset is superior to that of the 3D rendered only
dataset (orange vs. blue in Fig. 5).

before CycleGAN after CycleGAN

Fig. 6. CycleGAN dataset: Examples of applying CycleGAN to synthetic
images. The CycleGAN model emphasizes specular reflections on the tools
and organs, modifies the scene colors, and rounds the image corners.

IV. DATASETS AND EVALUATION PROTOCOLS

A. Public Datasets

The task of instrument segmentation in surgical scenes was
first introduced in the Endoscopic Vision 2015 Instrument
Segmentation and Tracking Dataset. However, the objective
was not to distinguish among instrument types, but to extract
the instruments from the background. The dataset’s annota-
tions were obtained using a semi-automatic method, leading
to a misalignment between the ground truth and the images.
Another limitation of this effort was the absence of substantial
background changes, which further simplified the task.

The Endoscopic Vision 2017 Robotic Instrument Segmenta-
tion (EndoVis2017) Dataset [41] was developed to overcome
the drawbacks of the 2015 benchmark. This dataset contains 10
robotic-assisted surgery image sequences, each composed of
225 frames. Eight sequences make up the training data and two
sequences the testing data. Despite the effort put into building
this dataset, it still does not reflect the general problem, mainly
due to the limited amount of data.

To remedy the above issues EndoVis2019 [18] was pre-
sented at MICCAI 2019, containing more than 10,000 image
frames for instrument segmentation. The dataset consists of
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three stages with increasing difficulty in terms of their test
sets. In Stage 1, the test data was taken from the procedures
(patients) from which the training data were extracted. In Stage
2, the test data was taken from precisely the same type of
surgery as the training data but from procedures (patients) not
included in the training. And finally, in Stage 3 the test data
was taken from a different but similar type of surgery (and
different patients) compared to the training data.

Another real clinical dataset, called RoboTool [27] was
released recently. This dataset contains 514 manually anno-
tated images extracted from the videos of 20 freely available
surgical procedures. The authors claim that the images con-
tain many challenging scenarios with tool-tissue interaction,
smoke, blood, debris and shadows. There is no train-test split
provided; the dataset is used either for training or for testing.

B. Synthetic Dataset

We render our synthetic dataset using Cycles, Blender3D’s
ray-tracing engine, at a resolution of 855 × 480 pixels. We
use 20 different models for background, 15 different models
of laparoscopic tools and 10K frames taken from laparoscopic
videos (where no tool is present). For each scene we randomly
select two background models, or one background model and
one real background frame, and one or two random laparo-
scopic tools. The background model and tools are randomly
rotated and positioned allowing for occlusions. In total we
have rendered 100K synthetic images using this method.

C. Evaluation

To assess the accuracy of segmentation the following two
evaluation metrics are usually used: Jaccard index and Dice
Similarity Coefficient. We use both methods, subject to the
paper we compare to. The Jaccard index can be interpreted as
a similarity measure between a finite number of sets. For two
sets A and B, it can be defined as following:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(1)

Since an image consists of pixels, the last expression can be
adapted to images as follows:

J(A,B) =

∑|A|
i=1 aibi∑|A|

i=1(ai + bi − aibi)
(2)

where A and B are images of the same size and ai, bi are the
binary values (labels) of each pixel (0-background, 1-object).
If A is the ground truth and B is the prediction, then a soft
version of the above substitutes the predicted probability of
the object for bi. As is common, we use this soft version.

The Dice Similarity Coefficient is defined as the harmonic
mean of precision and recall:

D(A,B) =
2|A ∩B|
|A|+ |B|

(3)

The following relationship between the Dice Similarity
Coefficient (D) and the Jaccard index (J) can be easily shown:

D =
2J

J + 1
⇔ J =

D

2−D
(4)

V. RESULTS AND DISCUSSION

A. Quantitative comparison to SOTA

We compare our results to SOTA on three datasets: En-
doVis2017 [25], EndoVis2019 [18] and RoboTool [27]. See
Section IV-A for more details. To achieve an accurate and fair
comparison, for each dataset we follow exactly the same setup
and protocol as the paper we compare to.

1) EndoVis2017 dataset: Following the setup in [25]
and [42] we use 4-fold cross-validation. The results are pre-
sented in Table I. The segmentation accuracy achieved by our
model trained on the pixel-accurate annotations (D=0.931) is
higher than [25] (D=0.900). Adding our synthetic data into
the training improves the accuracy even further (D=0.949).

When no pixel-accurate segmentation annotations is pro-
vided, we automatically generate the segmentation for training
data as explained in Section III-A. The accuracy of this
model is only slightly lower (D = 0.898 vs. D = 0.900)
than [25] which used the full pixel-accurate annotation in
training. Furthermore, incorporating our synthetic data into
training significantly improves the results, achieving D=0.941.

TABLE I
SEGMENTATION RESULTS ON ENDOVIS 2017 DATASET

Training Testing
Method Annotation Synthetic Data (Dice)
RF [17] pixel-accurate - 0.841

AP-MTL [23] pixel-accurate - 0.871
Shvets et al. 2018 [25] pixel-accurate - 0.900

RASNet 2019 [43] pixel-accurate - 0.946
Our pixel-accurate - 0.931
Our pixel-accurate 5000 0.949
Our - 5000 0.881
Our bounding box - 0.898
Our bounding box 5000 0.941

2) EndoVis2019 dataset: Following the setup in [18] we
evaluate the results on three different stages with increasing
difficulty. The results are presented in Table II. The segmen-
tation accuracy achieved by our model trained on the pixel-
accurate annotations is slightly lower than SOTA [18]. Adding
our synthetic data into the training improves the accuracy and
closes the above gap for all the stages.

TABLE II
SEGMENTATION RESULTS ON ENDOVIS 2019 DATASET

Training Testing (Dice)
Method Annotation Synth. Data Stage 1 Stage 2 Stage 3
RF [17] pixel-accurate - 0.84 0.82 0.82

AP-MTL [23] pixel-accurate - 0.87 0.85 0.84
Or-unet 2020 [18] pixel-accurate - 0.92 0.90 0.88

Our pixel-accurate - 0.90 0.88 0.87
Our pixel-accurate 5000 0.92 0.91 0.89
Our - 5000 0.74 0.76 0.80
Our bounding box - 0.88 0.89 0.85
Our bounding box 5000 0.91 0.90 0.89

3) RoboTool dataset: Following the setup in [27] we test
on the RoboTool dataset while training is performed on the
EndoVis2017 dataset. The results are presented in Table III.
The segmentation accuracy achieved by our model trained on
the pixel-accurate annotations is slightly lower (0.685) than
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SOTA [27] (0.694). Adding our synthetic data into the training
improves the accuracy to 0.722, outperforming SOTA [27],

Note, that the numbers in Table III for the SOTA [27] are
associated with applying their method in combination with
an independent post-processing step based on GrabCut [44].
Without the application of GrabCut, their results are much
lower: 0.666 (vs. 0.694) and 0.561 (vs. 0.681).

TABLE III
SEGMENTATION RESULTS ON ROBOTOOL DATASET.

Training Testing
Method Annotation Synthetic Data (IoU)
RF [17] EndoVis17 pix-accurate - 0.614

Garcia 2021 [27] EndoVis17 pix-accurate - 0.694
Garcia 2021 [27] - Semi-synth, 100000 0.681

Our - Our, 5000 0.67
Our EndoVis17 pix-accurate - 0.685
Our EndoVis17 pix-accurate Our, 5000 0.722
Our EndoVis17 bounding-box - 0.652
Our EndoVis17 bounding-box Our, 5000 0.711

B. Ablation and Sensitivity Studies

In the previous section we have provided quantitative results
for various datasets. In this section, we provide ablation
and sensitivity studies. To make the studies easier to follow,
we concentrate on only one dataset, EndoVis2019 [18]. For
training 5,983 images are used. For evaluation we use the
EndoVis2019 - Stage 3 test set consisting of 2,880 images,
which represents the largest of the all the test sets.

Figure 5 demonstrates the accuracy contribution of the
synthetic data as a function of the size of the synthetic
dataset. Using the images that underwent the CycleGAN
domain-adaptation increases the accuracy of the segmentation
by 10% compared to using the Blender-generated images
directly. Moreover, 5000 CycleGAN synthetic training images
are enough to achieve accuracy saturation; while when using
Blender-generated images for training (without CycleGAN),
we need around 30K images to achieve saturation.

Figure 7 shows segmentation performance vs. overall train-
ing set size (of real images). As shown in the previous
section, highest accuracy is achieved when incorporating our
synthetic data into the training. When using synthetic data,
the contribution of the pixel-accurate annotations (blue) is
almost identical to the case of using the cheap bounding box
annotations (orange). We also see that when our synthetic data
is used, we can reduce the number of real training images by
half with only a very small decrease in the final accuracy. Note
that in each of the experiments we used 5000 synthetic images;
increasing this number does not increase the final accuracy.

Figure 8 shows the segmentation performance as a function
of the percentage of pixel-accurate annotations. For each the
data points on the curve we train on 6K real images from the
EndoVis 2019 train set. The only thing that varies between
the data points is the percentage of pixel-accurate annotation
vs. bounding box annotation. The leftmost data point, 0%,
corresponds to the case when all of the annotations provided
during the training are bounding boxes. By contrast, the
rightmost data point, 100%, corresponds to the case when

Fig. 7. Sensitivity to the number of training images: the segmentation ac-
curacy increases as the number of the training images increases (Endovis2019,
Stage 3, Dice criterion). See accompanying description in the text.

all of the annotations are pixel-accurate segmentations. It can
be seen that using only 30% of pixel-accurate annotations
already achieves the maximal accuracy (equivalent to using
100% pixel-accurate annotations). This indicates that we can
significantly reduce the annotation effort without compromis-
ing accuracy, even before the introduction of the synthetic data.

Fig. 8. Sensitivity to percentage of pixel-accurate annotations: each of
the data points correspond to training on 6K real images, varying between
the percentage of the pixel-accurate annotation vs. the percentage of bounding
box annotation. (Endovis2019, Stage 3, Dice criterion)

VI. CONCLUSION

We introduced a novel approach for instrument segmen-
tation in laparoscopic surgeries that relies on weak and fast
annotations provided as bounding boxes of the instruments. To
achieve an accurate automatic generation of the segmentation
based on bounding boxes only we employed DeepMAC [36].
To improve the accuracy we incorporated synthetic images into
training. The generation of the synthetic images is achieved
by rendering laparoscopic scenes using Blender3D. To bridge
the gap between the generated synthetic images and the real
laparoscopic domain we used CycleGAN [29].

Our approach achieved SOTA results based on weak annota-
tions only, Training on the combination of automatically gen-
erated segmentations with our synthetic images, outperformed
previously proposed methods for instrument segmentation. In
the future we plan to extend our work from binary segmenta-
tion to instrument part segmentation. To improve the accuracy
we plan to introduce ensemble diversification methods [45].
We also plan to explore how our synthetic data can enable the
3D pose estimation of the instruments.
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