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Abstract. Conventional histopathology requires chemical staining to
make tissue samples usable by pathologists for diagnosis. This introduces
cost and variability and does not conserve the tissue for advanced molecu-
lar analysis of the sample. We demonstrate the use of conditional denois-
ing diffusion models applied to non-destructive autofluorescence images
of tissue samples in order to generate virtually stained images. To demon-
strate the power of this technique, we would like to measure the percep-
tual quality of the generated images; however, standard measures like the
Frechet Inception Distance (FID) are inappropriate for this task, as they
have been trained on natural images. We therefore introduce a new per-
ceptual measure, the Frechet StainNet Distance (FSD), and show that our
model attains significantly higher FSD than competing pix2pix models.
Finally, we also present a method of quantifying uncertain regions of the
image using the variations produced by diffusion models.
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1 Introduction

Conventional histopathology involves obtaining tissue sections from patient biop-
sies and applying chemical staining protocols which highlight different biological
features of the tissue. This stained tissue can then be assessed and diagnosed
by pathologist using a brightfield (BF) microscope. There are many chemical
stains corresponding to different features to be highlighted. However, the pro-
cess of staining can be destructive. A given stained tissue sample often cannot be
used again for other analyses. Therefore, the cost of advanced testing, research
or second opinions, which are often required for newer/rarer diseases, can be
prohibitive. Additional drawbacks of histochemical staining include expensive
laboratory infrastructure, slow processing times and the inherent variability in
equipment and expertise.

Virtual staining [3,15,18,19] is an AI-enabled alternative which removes the
need for chemical staining. Tissue samples are imaged using a non-destructive
auto-fluorescence (AF) scanner. The AF image records the spatial distribution
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Fig. 1. Diffusion models are able to generate virtual stained outputs with both high
fidelity to the target image and high perceptual quality.

emission spectra of the tissue after exposing it to excitation lasers and therefore
contains information about both the condition and location of different biological
features of the tissue. An image-to-image translation model can then be used to
learn the mapping from the AF image of the tissue to its stained BF image.
If this virtually stained image can capture all of the clinical features of real
stained tissues, the pathologist can use the translated image for clinical diagnosis.
Since the same AF image can be used for any number of stain types and the
original tissue is preserved, virtual staining can greatly reduce the cost and
effort of clinical pathology. The crucial step in this process is the image-to-image
translation algorithm. In this paper, we apply conditional diffusion models to this
task. We make the following key contributions:

1. Diffusion Models for Staining. We present a conditional diffusion model
for virtual staining, which maps AF images to chemically stained BF images.

2. Frechet StainNet Distance (FSD). We develop a new technique for evalu-
ating the perceptual quality of our output, referred to as the Frechet StainNet
Distance. As compared to FID, FSD is much more appropriate for evaluat-
ing stained microscopy images. We note that FSD may be applied to other
scenarios beyond that described in this paper.

3. Significantly Improved Perceptual Quality. We show empirically that
as compared to conditional GANs, the diffusion models perform significantly
better on perceptual quality as measured by FSD, while remaining compara-
ble on distortion measures.

4. Uncertainty Quantification. We use the capabilities of our diffusion
method to provide a reliable approximation of the uncertainty associated
with the stained estimate per each pixel (Fig. 1).

2 Related Work

Virtual Staining: Until recently, the state-of-the-art in image-to-image trans-
lation were conditional GANs such as pix2pix [11] for paired datasets, and
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CycleGANs [26] for unpaired ones. To prevent the GAN generator from halluci-
nating realistic images unrelated to the input, pixel-wise losses such as Lp dis-
tance between the virtual images and their corresponding ground truth are also
used in addition to adversarial losses. A major drawback of GANs is that they
are hard to train due to loss instability and mode collapse, e.g. see [2]. Previous
efforts in virtual staining have used both pix2pix and CycleGANs [3,15,18,19].
These prior work often only report distortion measures such as Lp norms. How-
ever, for virtual stains to replace chemical stains in a clinical workflow, they must
also look similar to human pathologists. Therefore it is important to benchmark
these models on perceptual quality. In this work, we benchmark our models
against a pix2pix model inspired by Rivenson et al. [19] with 128× 128 reso-
lution inputs, two discriminator losses (conditional and unconditional) and two
pixel-wise losses (L1 and rotated L1).

Diffusion: Diffusion models [22] have recently emerged with impressive results
on the task of unconditional image generation, beating GANs for generating
images with high diversity and perceptual quality [6,8]. An important variation
of these techniques is the conditional diffusion model, see e.g. [9,21,23,25] which
is the basis of our current work. Saharia et al. [9,21] show that diffusion models
can produce images with high perceptual quality without losing the structural
and semantic information of the input image on a number of image-to-image
translation tasks.

Perceptual Measures: The FID score [7] is commonly used to quantify per-
ceptual quality. However, since the standard InceptionV3 model [24] used in FID
has been trained on natural images, the measure is likely to have difficulty differ-
entiating between varying distributions of histological images, which can be close
to each other in the space of natural images. This has been documented previ-
ously for other data types such as audio and molecular data [12,16]. The tradeoff
between the distortion between the expected and the predicted images, and the
perceptual quality of the predicted image has been well studied [5]. Regression
models that minimize the distortion between the labels and the prediction can-
not produce outputs belonging to the expected output distribution. Therefore
such models have low perceptual quality, i.e. they do not produce images that
look like real images to humans. In contrast, GANs and diffusion models have
the ability to generate images of high perceptual quality.

Uncertainty Quantification: Quantifying uncertainty in deep learning is dif-
ficult due to the lack of a closed form expression for the density. Determinis-
tic models that produce a single output per input require complex interrogation
to extract such information. Perturbative methods, such as LIME [17], involve
repeated inference with varying data augmentations to estimate the effect of input
variations on the output. In contrast, integrated methods, such as quantile regres-
sion [13], involve adding credible interval bound estimation as an additional train-
ing objective, either during the original training or after it. Generative models pro-
vide a new opportunity as they can sample different outputs from the target dis-
tribution upon repeated inference. Following [10], in conditional diffusion models
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we apply a series of inference rounds and generate multiple results to approximate
the distribution of the output conditioned on the input.

3 Methodology

3.1 Denoising Diffusion Probabilistic Models

A denoising diffusion probabilistic model [8] can be described as a parameterized
Markov chain. The forward diffusion process is a series of steps that add small
amounts of Gaussian noise to the data until the signal is destroyed. Given data x0

which we consider a sampling of the distribution q(x0), we can create T vectors
{x1, ..., xT } of the same dimensions as x0 defined by the forward diffusion process:

q(xt|xt−1) = N (
√

1 − βtxt−1, βtI) for t = 1, 2, . . . , T,

i.e. xt is constructed as a mixture of xt−1 with a Gaussian noise, with the scaling
variance parameter βt ∈ (0, 1). It immediately follows from the above:

q(xt|x0) =
t∏

i=1

q(xi|xi−1) = N (
√

αtx0, (1 − αt)I) for t = 1, 2, . . . , T,

where αt =
∏t

i=1(1 − βi). The number of steps T and the variance schedule
βt are chosen such that xT is pure Gaussian noise, while at the same time the
variances βt of the forward process are small. Under these conditions, we can
learn a reverse process pθ which can be defined as

pθ(xt−1|xt) = N (μθ(xt, t), σθ(xt, t)) for t = T, T − 1, . . . , 1. (1)

Note that chaining these probabilities leads to a sampled outcome x0 following
the probability density function

pθ(x0) = p(xT )
1∏

t=T

pθ(xt−1|xt).

Returning to our goal of reversing the diffusion process, we can leverage the
following relationship:

q(xt−1|xt, x0) = N
(√

αt−1βt

1 − αt
x0 +

√
1 − βt(1 − αt−1)

1 − αt
xt,

1 − αt−1

1 − αt
βtI

)
(2)

Observe the similarity between Eq. (1) and the above expression, where the
later adds the knowledge of x0. Thus, we can approximate pθ by aligning the
two moments of these Gaussians, which imply that we use a learned denoiser
neural network Tθ(xt, t) for estimating x0 from xt and t:

μθ(xt, t) =
√

αt−1βt

1 − αt
Tθ(xt, t) +

√
1 − βt(1 − αt−1)

1 − αt
xt. (3)
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During inference, this denoising neural network is recursively applied, starting
from pure Gaussian noise, to produce samples from the data distribution.

In conditional diffusion, the denoiser is modified to include AF images of
tissue sample, y, concatenated to the input, both during training and inference.
As a result, with the modified denoiser Tθ(xt, y, t), the output of the diffusion
model is a sample from the posterior data distribution q(x0|y). This allows con-
ditional diffusion models to be used for image-to-image translation where the
input image is used as the condition.

3.2 Architecture

As is common practice in the diffusion literature [21], rather than learning
Tθ(xt, t) which returns the clean signal, one learns the noise itself (which is
trivially related to the clean signal). To learn this noise estimator, we adopt the
UNet [20] denoiser architecture, as proposed by Ho et al. [8] for diffusion models,
and the improvements proposed by Saharia et al. [21]. The UNet model uses a
stack of 6 blocks, each made of 2 residual layers and 1 downsampling convolution,
followed by a stack of 6 blocks of 2 residual layers and 1 upsampling convolution.
Skip connections connect the layers with the same spatial size. In addition, we
use a global attention layer with 2 heads at each downsampled resolution and
add the time-step embedding into each residual block.

3.3 Perceptual Quality Measures

For each model, we run inference on 20,000 128× 128 tiles and evaluate the virtual
stain results against real stain patches. In addition to standard Lp-based distor-
tion measures, we consider the following two measures of perceptual quality:

FID: The Frechet Inception Distance (FID) score is a perceptual measure shown
to correlate well with human perception of realism [7]. FID measures the Frechet
distance between two multivariate Gaussians fit to features of generated and real
images extracted by the pre-trained InceptionV3 model [24].

FSD: We created a new custom measure to characterize the perceptual qual-
ity of stained images, which we dub the Frechet StainNet Distance (FSD). We
create a dataset where each training example is a 128 × 128 patch of a stained
BF images with a corresponding label representing the slide-level clinical Non-
Alcoholic SteatoHepatitis (NASH) steatosis score (for more details on this score,
see Sect. 4.1). We then train a classification model, StainNet, on this dataset.
The features from StainNet are then taken to be the outputs of the penulti-
mate layer of the StainNet network. Analogously to FID, FSD then measures
the Frechet distance between two multivariate Gaussians fit to the StainNet fea-
tures: the first Gaussian for the generated images and the second Gaussian for
the real images. We note that FSD may be applied to other scenarios beyond
that described in this paper.
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Table 1. Quantitative evaluation results of different methods. All evals are done on
20,000 test image patches.

Model FID FSD L1 L2

Regression 356.4 624.8 10.5 13.8

pix2pix 115.7 54.1 12.7 18.1

Diffusion-B 82.2 15.2 15.1 21.1

Diffusion-B/R 81.7 34.5 13.5 19.3

Diffusion-L 69.1 4.5 13.4 19.3

3.4 Sample Diversity and Uncertainty

To calculate pixel-wise 90% credible intervals (i.e. we expect 10% of samples to
fall outside the bounds), we follow the approach proposed by Hoshen et al. [10].
We sample 20 outputs for every input image, and use these to approximate the
output image distribution and its 5th and 95th quantiles as the bounds. The cred-
ible interval size is then the difference between the upper and the lower bound
values for each pixel. This well-motivated but heuristic notion of uncertainty
is then properly calibrated using a calibration factor λ to the interval bounds,
which is determined using our validation set [1,4,10].

4 Experiments

4.1 Experimental Setup

Dataset. We use a proprietary dataset collected from a clinical study of patients
diagnosed with Non-Alcoholic SteatoHepatitis (NASH). The dataset contains
192 co-registered pairs of images of whole slides of liver tissue: one AF image (26
spectral channels) and one H&E chemically stained BF image (3 RGB channels).
The whole slides are captured at 40x resolution yielding large gigapixel images of
variable shapes and sizes. We split the slides into train/val/test data in 0.5:0.2:0.3
ratio. Finally, we extract paired patches of size 128× 128 from both AF and BF
images, and all of the training and evaluation is done at the patch level. Each slide
is between 1000 to 10000 pixels height and width and corresponds to between 700
and 3000 patches; thus the combined dataset is approximately 200,000 patches.
In addition, for each slide we also have a clinical steatosis score. This score
is an ordinal class between 0–3 assigned by human expert hepatopathologists
quantifying the amount of liver disease features they observe in the whole slide.

Training. The diffusion model is trained on 16 TPUv3 cores in parallel. We
use a batch size of 16 and a learning rate of 1e−5 throughout the entire training
for 1.5 million steps or 120 epochs. We choose the number of diffusion steps
T = 1000 and set the forward diffusion variances βt to increase following a
cosine function from β1 = 10−4 to βT = 0.02, in accordance with the findings of
Nichol and Dhariwal [14].
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Fig. 2. We compare our Diffusion-L model with the target and benchmark it against
regression and pix2pix models. Images generated by our diffusion model are closer to
the target images in both texture and color.

Model Variants. In addition to our large diffusion model Diffusion-L, which
has already been described, we train a number of variants. Diffusion-B is our
base model which is similar to Diffusion-L but with only one single head attention
layer at the 16× 16 layer. The Diffusion-B/R model is the base model trained
with an additional feature, in which a random part of the target image is masked
and used as a prior; during inference, however, the prior is completely masked
so that the generation is comparable to the other models.

4.2 Image Quality

We compare our diffusion model described above with a naive regression model,
as well as a pix2pix (conditional GAN) model. Both models also use a UNet
architecture, and the pix2pix model has additional unconditional and conditional
adversarial losses. The results are presented in Table 1, which shows both the
FID and FSD scores which measure perceptual quality, as well as L1 and L2
norms which measure distortion. Qualitative examples are shown in Fig. 2.

All of the diffusion models do score better (lower) in terms of FID scores;
nevertheless, as previously noted, FID is not a very discriminative perceptual
measure for stained pathology images, as it has been trained on natural images.
For example, the Diffusion-B and Diffusion-B/R models attain almost identical
FIDs. By contrast, FSD is much more discriminative and clearly shows that
Diffusion-B/R has worse perceptual quality. Overall, the best result is attained
by the Diffusion-L model, which receives an FSD score of 4.5; this is considerably
better than the scores attained by the regression and pix2pix models, which are
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Fig. 3. Examples of per-pixel credible interval bound estimation using generative sam-
pling. The 5th and 95th percentile for each pixel is used as the lower and upper bounds
of the credible interval.

624.8 and 54.1, respectively. This perceptual advantage is demonstrated qualita-
tively in Fig. 2: images generated by Diffusion-L are closer to the target images
in both texture and color than pix2pix and the regression model.

It has been theoretically established that attaining a better perceptual score
leads to worse performance on distortion [5]. It is thus not surprising that the
regression model attains the best distortion measures, as its loss is completely
focused on the distortion; as a consequence, its FSD is very poor. Both pix2pix
and the diffusion models aim at optimizing a combination of distortion and
perceptual measures. Comparing the Diffusion-L and pix2pix models, we note
that they have comparable distortion scores, despite the Diffusion-L model’s
significant performance advantage on perceptual scores.

4.3 Uncertainty Estimation

Figure 3 shows examples of our per-pixel uncertainty estimation. The interval size
is the difference between the lower bound and the upper bound of the credible
interval, thus larger intervals indicate greater uncertainty. Using our validation
set, we observe a calibration factor λ = 1.32. As we can see in Fig. 3, nuclei are
an important source of uncertainty in stains. This finding might motivate the
development of future methods which focus on nuclei, e.g. through the use of
manual annotation of some nuclei and weighted losses emphasizing these regions.

5 Conclusion

In this work, we demonstrate conditional diffusion models for synthesizing highly
realistic histopathology images. We test the perceptual quality of these models
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using a custom Frechet distance measure. The lack of resolution of the standard
Frechet distance FID and the increased discrimination using our custom Frechet
distance FSD, indicates that embeddings trained on natural image datasets are
not general enough to capture perceptual quality for pathology images. More
work is needed to determine whether new quality measures can generalize across
a variety of medical image type or must being tailored to each specific image
type such as the measure for NASH pathology images in this work. Our results
suggest that conditional diffusion models are a promising approach for image-to-
image translation tasks, even when we expect outputs with high fidelity and low
sample diversity. The observed sample diversity itself can be usefully employed
to compute an empirical measure of uncertainty.
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